Update README.md
Browse files
README.md
CHANGED
@@ -33,13 +33,11 @@ The model leverages the BertForSequenceClassification architecture, It has been
|
|
33 |
|
34 |
## Example
|
35 |
|
|
|
36 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
37 |
-
|
38 |
import numpy as np
|
39 |
-
|
40 |
from scipy.special import expit
|
41 |
|
42 |
-
|
43 |
MODEL = "PavanDeepak/Topic_Classification"
|
44 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
45 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
@@ -54,10 +52,9 @@ scores = expit(scores)
|
|
54 |
predictions = (scores >= 0.5) * 1
|
55 |
|
56 |
for i in range(len(predictions)):
|
57 |
-
|
58 |
if predictions[i]:
|
59 |
-
|
60 |
print(class_mapping[i])
|
|
|
61 |
|
62 |
|
63 |
## Output:
|
|
|
33 |
|
34 |
## Example
|
35 |
|
36 |
+
```python
|
37 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
38 |
import numpy as np
|
|
|
39 |
from scipy.special import expit
|
40 |
|
|
|
41 |
MODEL = "PavanDeepak/Topic_Classification"
|
42 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
43 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
|
|
52 |
predictions = (scores >= 0.5) * 1
|
53 |
|
54 |
for i in range(len(predictions)):
|
|
|
55 |
if predictions[i]:
|
|
|
56 |
print(class_mapping[i])
|
57 |
+
```python
|
58 |
|
59 |
|
60 |
## Output:
|