Upload BERT-Text2Date.md
Browse files- BERT-Text2Date.md +149 -0
BERT-Text2Date.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# Model Card for BERT-Text2Date
|
4 |
+
|
5 |
+
## Model Overview
|
6 |
+
|
7 |
+
**Model Name:** BERT-Text2Date
|
8 |
+
**Model Type:** BERT (Encoder-only architecture)
|
9 |
+
**Language:** Persian
|
10 |
+
|
11 |
+
**Description:**
|
12 |
+
This model is designed to process and generate Persian dates in both formal (YYYY-MM-DD) and informal formats. It utilizes a dataset that includes various representations of dates, allowing for effective training in understanding and predicting Persian date formats.
|
13 |
+
|
14 |
+
## Dataset
|
15 |
+
|
16 |
+
**Dataset Description:**
|
17 |
+
The dataset consists of two types of dates: formal and informal. It is generated using two main functions:
|
18 |
+
|
19 |
+
- **`convert_year_to_persian(year)`**: Converts years to Persian format, currently supporting the year 1400.
|
20 |
+
- **`generate_date_mappings_with_persian_year(start_year, end_year)`**: Generates dates for a specified range, considering the number of days in each month.
|
21 |
+
|
22 |
+
**Data Formats:**
|
23 |
+
|
24 |
+
- **Informal Dates:** Various formats like “روز X ماه سال” and “اول/دوم/… ماه سال”.
|
25 |
+
- **Formal Dates:** Stored in YYYY-MM-DD format.
|
26 |
+
|
27 |
+
**Example Dates:**
|
28 |
+
|
29 |
+
- بیست و هشتم اسفند هزار و چهار صد و ده, 1410-12-28
|
30 |
+
- 1 فروردین 1400, 1400-01-01
|
31 |
+
|
32 |
+
**Data Split:**
|
33 |
+
|
34 |
+
- **Training Set:** 80% (19272 samples)
|
35 |
+
- **Validation Set:** 10% (2409 samples)
|
36 |
+
- **Test Set:** 10% (2409 samples)
|
37 |
+
|
38 |
+
## Model Architecture
|
39 |
+
|
40 |
+
**Architecture Details:**
|
41 |
+
The model is built using an encoder-only architecture, consisting of:
|
42 |
+
|
43 |
+
- **Layers:** 4 Encoder layers
|
44 |
+
- **Parameters:**
|
45 |
+
- `vocab_size`: 25003
|
46 |
+
- `context_length`: 32
|
47 |
+
- `emb_dim`: 256
|
48 |
+
- `n_heads`: 4
|
49 |
+
- `drop_rate`: 0.1
|
50 |
+
|
51 |
+
**Parameter Count:** 14,933,931
|
52 |
+
|
53 |
+
```
|
54 |
+
Transformer( (embedding): Embedding(25003, 256) (positional_encoding): Embedding(32, 256) (en): TransformerEncoder( (layers): ModuleList( (0-3): 4 x TransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=False) ) (linear1): Linear(in_features=256, out_features=512, bias=False) (dropout): Dropout(p=0.1, inplace=False) (linear2): Linear(in_features=512, out_features=256, bias=False) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.1, inplace=False) (dropout2): Dropout(p=0.1, inplace=False) ) ) ) (fc_train): Linear(in_features=256, out_features=25003, bias=True) )
|
55 |
+
```
|
56 |
+
|
57 |
+
**Tokenizer:**
|
58 |
+
The model uses a Persian tokenizer named “بلبل زبان” available on Hugging Face, with a vocabulary size of 25,000 tokens.
|
59 |
+
|
60 |
+
## Training
|
61 |
+
|
62 |
+
**Training Process:**
|
63 |
+
|
64 |
+
- **Batch Size:** 2048
|
65 |
+
- **Epochs:** 60
|
66 |
+
- **Learning Rate:** 0.00005
|
67 |
+
- **Optimizer:** AdamW
|
68 |
+
- **Weight Decay:** 0.2
|
69 |
+
- **Masking Technique:** The formal part of the date is masked to facilitate learning.
|
70 |
+
|
71 |
+
**Performance Metrics:**
|
72 |
+
|
73 |
+
- **Training Loss:** Reduced from 10.3 to 0.005 over 60 epochs.
|
74 |
+
- **Validation Loss:** Reduced from 10.1 to 0.010.
|
75 |
+
- **Test Accuracy:** 66% (exact match required).
|
76 |
+
- **Perplexity:** 1.01
|
77 |
+
|
78 |
+
## Inference
|
79 |
+
|
80 |
+
**Inference Code:**
|
81 |
+
The model can be loaded along with the tokenizer using the provided `Inference.ipynb` file. Three functions are implemented:
|
82 |
+
|
83 |
+
1. **Convert Token IDs to Text**
|
84 |
+
```python
|
85 |
+
def text_to_token_ids(text, tokenizer):
|
86 |
+
|
87 |
+
encoded = tokenizer.encode(text)
|
88 |
+
|
89 |
+
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
90 |
+
|
91 |
+
return encoded_tensor
|
92 |
+
```
|
93 |
+
|
94 |
+
2. **Convert Text to Token IDs**
|
95 |
+
```python
|
96 |
+
def token_ids_to_text(token_ids, tokenizer):
|
97 |
+
|
98 |
+
flat = token_ids.squeeze(0) # remove batch dimension
|
99 |
+
|
100 |
+
return tokenizer.decode(flat.tolist())
|
101 |
+
```
|
102 |
+
|
103 |
+
3. **`predict_masked(input)`**: Takes an input to predict the masked date.
|
104 |
+
```python
|
105 |
+
def predict_masked(model,tokenizer,input,deivce):
|
106 |
+
|
107 |
+
model.eval()
|
108 |
+
|
109 |
+
inputs_masked = input + " " + "[MASK][MASK][MASK][MASK]-[MASK][MASK]-[MASK][MASK]"
|
110 |
+
|
111 |
+
input_ids = tokenizer.encode(inputs_masked)
|
112 |
+
|
113 |
+
input_ids = torch.tensor(input_ids).to(deivce)
|
114 |
+
|
115 |
+
with torch.no_grad():
|
116 |
+
|
117 |
+
logits = model(input_ids.unsqueeze(0))
|
118 |
+
|
119 |
+
logits = logits.flatten(0, 1)
|
120 |
+
|
121 |
+
probs = torch.argmax(logits,dim=-1,keepdim=True)
|
122 |
+
|
123 |
+
token_ids = probs.squeeze(1)
|
124 |
+
|
125 |
+
answer_ids = token_ids[-11:-1]
|
126 |
+
|
127 |
+
return token_ids_to_text(answer_ids,tokenizer)
|
128 |
+
```
|
129 |
+
|
130 |
+
And use:
|
131 |
+
```python
|
132 |
+
predict_masked(model,tokenizer,"12 آبان 1402","cuda")
|
133 |
+
```
|
134 |
+
Output:
|
135 |
+
```
|
136 |
+
'1402-08-12'
|
137 |
+
```
|
138 |
+
## Limitations
|
139 |
+
|
140 |
+
- The model currently only supports Persian dates for the year 1400-1410, with potential for expansion.
|
141 |
+
- Performance may vary with dates outside the training dataset.
|
142 |
+
|
143 |
+
## Intended Use
|
144 |
+
|
145 |
+
This model is intended for applications requiring date recognition and generation in Persian, such as natural language processing tasks, chatbots, or educational tools.
|
146 |
+
|
147 |
+
## Acknowledgements
|
148 |
+
|
149 |
+
- Special thanks to the developers of the “بلبل زبان” tokenizer and the contributors to the dataset.
|