Parssky commited on
Commit
1df0173
1 Parent(s): 0a92ec5

Upload BERT-Text2Date.md

Browse files
Files changed (1) hide show
  1. BERT-Text2Date.md +149 -0
BERT-Text2Date.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # Model Card for BERT-Text2Date
4
+
5
+ ## Model Overview
6
+
7
+ **Model Name:** BERT-Text2Date
8
+ **Model Type:** BERT (Encoder-only architecture)
9
+ **Language:** Persian
10
+
11
+ **Description:**
12
+ This model is designed to process and generate Persian dates in both formal (YYYY-MM-DD) and informal formats. It utilizes a dataset that includes various representations of dates, allowing for effective training in understanding and predicting Persian date formats.
13
+
14
+ ## Dataset
15
+
16
+ **Dataset Description:**
17
+ The dataset consists of two types of dates: formal and informal. It is generated using two main functions:
18
+
19
+ - **`convert_year_to_persian(year)`**: Converts years to Persian format, currently supporting the year 1400.
20
+ - **`generate_date_mappings_with_persian_year(start_year, end_year)`**: Generates dates for a specified range, considering the number of days in each month.
21
+
22
+ **Data Formats:**
23
+
24
+ - **Informal Dates:** Various formats like “روز X ماه سال” and “اول/دوم/… ماه سال”.
25
+ - **Formal Dates:** Stored in YYYY-MM-DD format.
26
+
27
+ **Example Dates:**
28
+
29
+ - بیست و هشتم اسفند هزار و چهار صد و ده, 1410-12-28
30
+ - 1 فروردین 1400, 1400-01-01
31
+
32
+ **Data Split:**
33
+
34
+ - **Training Set:** 80% (19272 samples)
35
+ - **Validation Set:** 10% (2409 samples)
36
+ - **Test Set:** 10% (2409 samples)
37
+
38
+ ## Model Architecture
39
+
40
+ **Architecture Details:**
41
+ The model is built using an encoder-only architecture, consisting of:
42
+
43
+ - **Layers:** 4 Encoder layers
44
+ - **Parameters:**
45
+ - `vocab_size`: 25003
46
+ - `context_length`: 32
47
+ - `emb_dim`: 256
48
+ - `n_heads`: 4
49
+ - `drop_rate`: 0.1
50
+
51
+ **Parameter Count:** 14,933,931
52
+
53
+ ```
54
+ Transformer( (embedding): Embedding(25003, 256) (positional_encoding): Embedding(32, 256) (en): TransformerEncoder( (layers): ModuleList( (0-3): 4 x TransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=False) ) (linear1): Linear(in_features=256, out_features=512, bias=False) (dropout): Dropout(p=0.1, inplace=False) (linear2): Linear(in_features=512, out_features=256, bias=False) (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.1, inplace=False) (dropout2): Dropout(p=0.1, inplace=False) ) ) ) (fc_train): Linear(in_features=256, out_features=25003, bias=True) )
55
+ ```
56
+
57
+ **Tokenizer:**
58
+ The model uses a Persian tokenizer named “بلبل زبان” available on Hugging Face, with a vocabulary size of 25,000 tokens.
59
+
60
+ ## Training
61
+
62
+ **Training Process:**
63
+
64
+ - **Batch Size:** 2048
65
+ - **Epochs:** 60
66
+ - **Learning Rate:** 0.00005
67
+ - **Optimizer:** AdamW
68
+ - **Weight Decay:** 0.2
69
+ - **Masking Technique:** The formal part of the date is masked to facilitate learning.
70
+
71
+ **Performance Metrics:**
72
+
73
+ - **Training Loss:** Reduced from 10.3 to 0.005 over 60 epochs.
74
+ - **Validation Loss:** Reduced from 10.1 to 0.010.
75
+ - **Test Accuracy:** 66% (exact match required).
76
+ - **Perplexity:** 1.01
77
+
78
+ ## Inference
79
+
80
+ **Inference Code:**
81
+ The model can be loaded along with the tokenizer using the provided `Inference.ipynb` file. Three functions are implemented:
82
+
83
+ 1. **Convert Token IDs to Text**
84
+ ```python
85
+ def text_to_token_ids(text, tokenizer):
86
+
87
+ encoded = tokenizer.encode(text)
88
+
89
+ encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
90
+
91
+ return encoded_tensor
92
+ ```
93
+
94
+ 2. **Convert Text to Token IDs**
95
+ ```python
96
+ def token_ids_to_text(token_ids, tokenizer):
97
+
98
+ flat = token_ids.squeeze(0) # remove batch dimension
99
+
100
+ return tokenizer.decode(flat.tolist())
101
+ ```
102
+
103
+ 3. **`predict_masked(input)`**: Takes an input to predict the masked date.
104
+ ```python
105
+ def predict_masked(model,tokenizer,input,deivce):
106
+
107
+ model.eval()
108
+
109
+ inputs_masked = input + " " + "[MASK][MASK][MASK][MASK]-[MASK][MASK]-[MASK][MASK]"
110
+
111
+ input_ids = tokenizer.encode(inputs_masked)
112
+
113
+ input_ids = torch.tensor(input_ids).to(deivce)
114
+
115
+ with torch.no_grad():
116
+
117
+ logits = model(input_ids.unsqueeze(0))
118
+
119
+ logits = logits.flatten(0, 1)
120
+
121
+ probs = torch.argmax(logits,dim=-1,keepdim=True)
122
+
123
+ token_ids = probs.squeeze(1)
124
+
125
+ answer_ids = token_ids[-11:-1]
126
+
127
+ return token_ids_to_text(answer_ids,tokenizer)
128
+ ```
129
+
130
+ And use:
131
+ ```python
132
+ predict_masked(model,tokenizer,"12 آبان 1402","cuda")
133
+ ```
134
+ Output:
135
+ ```
136
+ '1402-08-12'
137
+ ```
138
+ ## Limitations
139
+
140
+ - The model currently only supports Persian dates for the year 1400-1410, with potential for expansion.
141
+ - Performance may vary with dates outside the training dataset.
142
+
143
+ ## Intended Use
144
+
145
+ This model is intended for applications requiring date recognition and generation in Persian, such as natural language processing tasks, chatbots, or educational tools.
146
+
147
+ ## Acknowledgements
148
+
149
+ - Special thanks to the developers of the “بلبل زبان” tokenizer and the contributors to the dataset.