Haominglll commited on
Commit
91c4371
·
verified ·
1 Parent(s): 8c22d39

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +229 -3
  2. README_zh.md +230 -0
README.md CHANGED
@@ -1,3 +1,229 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - THUDM/CogVideoX-5b
5
+ language:
6
+ - en
7
+ tags:
8
+ - video-generation
9
+ - paddlemix
10
+ ---
11
+
12
+ Englishh | [简体中文](README_zh.md)
13
+ # VCtrl
14
+ <p style="text-align: center;">
15
+ <p align="center">
16
+ <a href="https://huggingface.co/PaddleMIX">🤗 Huggingface Space</a> |
17
+ <a href="https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl">🌐 Github </a> |
18
+ <a href="">📜 arxiv </a> |
19
+ <a href="https://pp-vctrl.github.io/">📷 Project </a>
20
+ </p>
21
+
22
+ ## Model Introduction
23
+ **VCtrl** is a versatile video generation control model that introduces an auxiliary conditional encoder to flexibly connect with various control modules while avoiding large-scale retraining of the original generator. The model efficiently transmits control signals through sparse residual connections and standardizes diverse control inputs into a unified representation via a consistent encoding process. Task-specific masks are further incorporated to enhance adaptability. Thanks to this unified and flexible design, VCtrl can be widely applied in ​**character animation**, ​**scene transition**, ​**video editing**, and other video generation scenarios. The table below provides detailed information about the video generation models we offer:
24
+
25
+ <table style="border-collapse: collapse; width: 100%;">
26
+ <tr>
27
+ <th style="text-align: center;">Model Name</th>
28
+ <th style="text-align: center;">VCtrl-Canny</th>
29
+ <th style="text-align: center;">VCtrl-Mask</th>
30
+ <th style="text-align: center;">VCtrl-Pose</th>
31
+ </tr>
32
+ <tr>
33
+ <td style="text-align: center;">Video Resolution</td>
34
+ <td colspan="1" style="text-align: center;">720 * 480</td>
35
+ <td colspan="1" style="text-align: center;"> 720 * 480 </td>
36
+ <td colspan="1 style="text-align: center;"> 720 * 480 & 480 * 720 </td>
37
+ </tr>
38
+ <tr>
39
+ <td style="text-align: center;">Inference Precision</td>
40
+ <td colspan="3" style="text-align: center;"><b>FP16(Recommended)</b></td>
41
+ </tr>
42
+ <tr>
43
+ <td style="text-align: center;">Single GPU VRAM Usage</td>
44
+ <td colspan="3" style="text-align: center;"><b>V100: 32GB minimum*</b></td>
45
+ </tr>
46
+ <tr>
47
+ <td style="text-align: center;">Inference Speed<br>(Step = 25, FP16)</td>
48
+ <td colspan="3" style="text-align: center;">Single A100: ~300s(49 frames)<br>Single V100: ~400s(49 frames)</td>
49
+ </tr>
50
+ <tr>
51
+ <td style="text-align: center;">Prompt Language</td>
52
+ <td colspan="5" style="text-align: center;">English*</td>
53
+ </tr>
54
+ <tr>
55
+ <td style="text-align: center;">Prompt Length Limit</td>
56
+ <td colspan="3" style="text-align: center;">224 Tokens</td>
57
+ </tr>
58
+ <tr>
59
+ <td style="text-align: center;">Video Length</td>
60
+ <td colspan="3" style="text-align: center;">T2V model supports only 49 frames, I2V model can extend to any frame count</td>
61
+ </tr>
62
+ <tr>
63
+ <td style="text-align: center;">Frame Rate</td>
64
+ <td colspan="3" style="text-align: center;">30 FPS </td>
65
+ </tr>
66
+ </table>
67
+
68
+ ## Quick Start 🤗
69
+
70
+ This model is now supported for deployment using the ppdiffusers library from paddlemix. Follow the steps below to get started.
71
+
72
+ **We recommend visiting our [github](https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl) for a better experience.**
73
+
74
+ 1. Install dependencies
75
+
76
+ ```shell
77
+ # Clone the PaddleMIX repository
78
+ git clone https://github.com/PaddlePaddle/PaddleMIX.git
79
+ # Install paddlemix
80
+ cd PaddleMIX
81
+ pip install -e .
82
+ # Install ppdiffusers
83
+ pip install -e ppdiffusers
84
+ # Install paddlenlp
85
+ pip install paddlenlp==v3.0.0-beta2
86
+ # Navigate to the vctrl directory
87
+ cd ppdiffusers/examples/ppvctrl
88
+ # Install other required dependencies
89
+ pip install -r requirements.txt
90
+ # Install paddlex
91
+ pip install paddlex==3.0.0b2
92
+ ```
93
+
94
+ 2. Run the code
95
+
96
+ ```python
97
+ import os
98
+ import paddle
99
+ import numpy as np
100
+ from decord import VideoReader
101
+ from moviepy.editor import ImageSequenceClip
102
+ from PIL import Image
103
+ from ppdiffusers import (
104
+ CogVideoXDDIMScheduler,
105
+ CogVideoXTransformer3DVCtrlModel,
106
+ CogVideoXVCtrlPipeline,
107
+ VCtrlModel,
108
+ )
109
+ def write_mp4(video_path, samples, fps=8):
110
+ clip = ImageSequenceClip(samples, fps=fps)
111
+ clip.write_videofile(video_path, audio_codec="aac")
112
+
113
+
114
+ def save_vid_side_by_side(batch_output, validation_control_images, output_folder, fps):
115
+ flattened_batch_output = [img for sublist in batch_output for img in sublist]
116
+ ori_video_path = output_folder + "/origin_predict.mp4"
117
+ video_path = output_folder + "/test_1.mp4"
118
+ ori_final_images = []
119
+ final_images = []
120
+ outputs = []
121
+
122
+ def get_concat_h(im1, im2):
123
+ dst = Image.new("RGB", (im1.width + im2.width, max(im1.height, im2.height)))
124
+ dst.paste(im1, (0, 0))
125
+ dst.paste(im2, (im1.width, 0))
126
+ return dst
127
+
128
+ for image_list in zip(validation_control_images, flattened_batch_output):
129
+ predict_img = image_list[1].resize(image_list[0].size)
130
+ result = get_concat_h(image_list[0], predict_img)
131
+ ori_final_images.append(np.array(image_list[1]))
132
+ final_images.append(np.array(result))
133
+ outputs.append(np.array(predict_img))
134
+ write_mp4(ori_video_path, ori_final_images, fps=fps)
135
+ write_mp4(video_path, final_images, fps=fps)
136
+ output_path = output_folder + "/output.mp4"
137
+ write_mp4(output_path, outputs, fps=fps)
138
+
139
+
140
+ def load_images_from_folder_to_pil(folder):
141
+ images = []
142
+ valid_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"}
143
+
144
+ def frame_number(filename):
145
+ new_pattern_match = re.search("frame_(\\d+)_7fps", filename)
146
+ if new_pattern_match:
147
+ return int(new_pattern_match.group(1))
148
+ matches = re.findall("\\d+", filename)
149
+ if matches:
150
+ if matches[-1] == "0000" and len(matches) > 1:
151
+ return int(matches[-2])
152
+ return int(matches[-1])
153
+ return float("inf")
154
+
155
+ sorted_files = sorted(os.listdir(folder), key=frame_number)
156
+ for filename in sorted_files:
157
+ ext = os.path.splitext(filename)[1].lower()
158
+ if ext in valid_extensions:
159
+ img = Image.open(os.path.join(folder, filename)).convert("RGB")
160
+ images.append(img)
161
+ return images
162
+
163
+
164
+ def load_images_from_video_to_pil(video_path):
165
+ images = []
166
+ vr = VideoReader(video_path)
167
+ length = len(vr)
168
+ for idx in range(length):
169
+ frame = vr[idx].asnumpy()
170
+ images.append(Image.fromarray(frame))
171
+ return images
172
+
173
+
174
+ validation_control_images = load_images_from_video_to_pil('your_path')
175
+ prompt = 'Group of fishes swimming in aquarium.'
176
+ vctrl = VCtrlModel.from_pretrained(
177
+ paddlemix/vctrl-5b-t2v-canny,
178
+ low_cpu_mem_usage=True,
179
+ paddle_dtype=paddle.float16
180
+ )
181
+ pipeline = CogVideoXVCtrlPipeline.from_pretrained(
182
+ paddlemix/cogvideox-5b-vctrl,
183
+ vctrl=vctrl,
184
+ paddle_dtype=paddle.float16,
185
+ low_cpu_mem_usage=True,
186
+ map_location="cpu",
187
+ )
188
+ pipeline.scheduler = CogVideoXDDIMScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
189
+ pipeline.vae.enable_tiling()
190
+ pipeline.vae.enable_slicing()
191
+ task='canny'
192
+ final_result=[]
193
+ video = pipeline(
194
+ prompt=prompt,
195
+ num_inference_steps=25,
196
+ num_frames=49,
197
+ guidance_scale=35,
198
+ generator=paddle.Generator().manual_seed(42),
199
+ conditioning_frames=validation_control_images[:num_frames],
200
+ conditioning_frame_indices=list(range(num_frames)),
201
+ conditioning_scale=1.0,
202
+ width=720,
203
+ height=480,
204
+ task='canny',
205
+ conditioning_masks=validation_mask_images[:num_frames] if task == "mask" else None,
206
+ vctrl_layout_type='spacing',
207
+ ).frames[0]
208
+ final_result.append(video)
209
+ save_vid_side_by_side(final_result, validation_control_images[:num_frames], 'save.mp4', fps=30)
210
+ ```
211
+
212
+ ## In-Depth Exploration
213
+
214
+ Welcome to our[github]("https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl"), where you will find:
215
+
216
+ 1. More detailed technical explanations and code walkthroughs.
217
+ 2. Algorithm details for extracting control conditions.
218
+ 3. Detailed code for model inference.
219
+ 4. Project update logs and more interactive opportunities.
220
+ 5. PaddleMix toolchain to help you better utilize the model.
221
+
222
+ ## Citation
223
+
224
+ ```
225
+ @article{yang2024cogvideox,
226
+ title={VCtrl: Enabling Versatile Controls for Video Diffusion Models},
227
+ year={2025}
228
+ }
229
+ ```
README_zh.md ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - THUDM/CogVideoX-5b
5
+ language:
6
+ - en
7
+ tags:
8
+ - video-generation
9
+ - paddlemix
10
+ ---
11
+
12
+ 简体中文 | [English](README.md)
13
+ # VCtrl
14
+ <p style="text-align: center;">
15
+ <p align="center">
16
+ <a href="https://huggingface.co/PaddleMIX">🤗 Huggingface Space</a> |
17
+ <a href="https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl">🌐 Github </a> |
18
+ <a href="">📜 arxiv </a> |
19
+ <a href="https://pp-vctrl.github.io/">📷 Project </a>
20
+ </p>
21
+
22
+ ## 模型介绍
23
+ **VCtrl** 是一个通用的视频生成控制模型,通过引入辅助条件编码器,能够灵活对接各类控制模块,并且在不改变原始生成器的前提下避免了大规模重训练。该模型利用稀疏残差连接实现对控制信号的高效传递,同时通过统一的条件编码流程,将多种控制输入转换为标准化表示,再结合任务特定掩码以提升适应性。得益于这种统一而灵活的设计,VCtrl 可广泛应用于**人物动画**、**场景转换**、**视频编辑**等视频生成场景。下表展示我们在本代提供的视频生成模型列表相关信息:
24
+
25
+ <table style="border-collapse: collapse; width: 100%;">
26
+ <tr>
27
+ <th style="text-align: center;">模型名</th>
28
+ <th style="text-align: center;">VCtrl-Canny</th>
29
+ <th style="text-align: center;">VCtrl-Mask</th>
30
+ <th style="text-align: center;">VCtrl-Pose</th>
31
+ </tr>
32
+ <tr>
33
+ <td style="text-align: center;">视频分辨率</td>
34
+ <td colspan="1" style="text-align: center;">720 * 480</td>
35
+ <td colspan="1" style="text-align: center;"> 720*480 </td>
36
+ <td colspan="1" style="text-align: center;"> 720*480 & 480*720 </td>
37
+ </tr>
38
+ <tr>
39
+ <td style="text-align: center;">推理精度</td>
40
+ <td colspan="3" style="text-align: center;"><b>FP16(推荐)</b></td>
41
+ </tr>
42
+ <tr>
43
+ <td style="text-align: center;">单GPU显存消耗</td>
44
+ <td colspan="3" style="text-align: center;"><b>V100: 32GB minimum*</b></td>
45
+ </tr>
46
+ <tr>
47
+ <td style="text-align: center;">推理速度<br>(Step = 25, FP16)</td>
48
+ <td colspan="3" style="text-align: center;">单卡A100: ~300秒(49帧)<br>单卡V100: ~400秒(49帧)</td>
49
+ </tr>
50
+ <tr>
51
+ <td style="text-align: center;">提示词语言</td>
52
+ <td colspan="5" style="text-align: center;">English*</td>
53
+ </tr>
54
+ <tr>
55
+ <td style="text-align: center;">提示词长度上限</td>
56
+ <td colspan="3" style="text-align: center;">224 Tokens</td>
57
+ </tr>
58
+ <tr>
59
+ <td style="text-align: center;">视频长度</td>
60
+ <td colspan="3" style="text-align: center;">T2V模型只支持49帧,I2V模型可以扩展为任意帧</td>
61
+ </tr>
62
+ <tr>
63
+ <td style="text-align: center;">帧率</td>
64
+ <td colspan="3" style="text-align: center;">30 帧 / 秒 </td>
65
+ </tr>
66
+ </table>
67
+
68
+ ## 快速开始 🤗
69
+
70
+ 本模型已经支持使用 paddlemix 的 ppdiffusers 库进行部署,你可以按照以下步骤进行部署。
71
+
72
+ **我们推荐您进入我们的 [github](https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl)以获得更好的体验。**
73
+
74
+ 1. 安装对应的依赖
75
+
76
+ ```shell
77
+ # 克隆 PaddleMIX 仓库
78
+ git clone https://github.com/PaddlePaddle/PaddleMIX.git
79
+ #安装paddlemix
80
+ cd PaddleMIX
81
+ pip install -e .
82
+ # 安装ppdiffusers
83
+ pip install -e ppdiffusers
84
+ # 安装paddlenlp
85
+ pip install paddlenlp==v3.0.0-beta2
86
+ # 进入 vctrl目录
87
+ cd ppdiffusers/examples/ppvctrl
88
+ # 安装其他所需的依赖
89
+ pip install -r requirements.txt
90
+ #安装paddlex
91
+ pip install paddlex==3.0.0b2
92
+
93
+ ```
94
+
95
+ 2. 运行代码
96
+
97
+ ```python
98
+ import os
99
+ import paddle
100
+ import numpy as np
101
+ from decord import VideoReader
102
+ from moviepy.editor import ImageSequenceClip
103
+ from PIL import Image
104
+ from ppdiffusers import (
105
+ CogVideoXDDIMScheduler,
106
+ CogVideoXTransformer3DVCtrlModel,
107
+ CogVideoXVCtrlPipeline,
108
+ VCtrlModel,
109
+ )
110
+ def write_mp4(video_path, samples, fps=8):
111
+ clip = ImageSequenceClip(samples, fps=fps)
112
+ clip.write_videofile(video_path, audio_codec="aac")
113
+
114
+
115
+ def save_vid_side_by_side(batch_output, validation_control_images, output_folder, fps):
116
+ flattened_batch_output = [img for sublist in batch_output for img in sublist]
117
+ ori_video_path = output_folder + "/origin_predict.mp4"
118
+ video_path = output_folder + "/test_1.mp4"
119
+ ori_final_images = []
120
+ final_images = []
121
+ outputs = []
122
+
123
+ def get_concat_h(im1, im2):
124
+ dst = Image.new("RGB", (im1.width + im2.width, max(im1.height, im2.height)))
125
+ dst.paste(im1, (0, 0))
126
+ dst.paste(im2, (im1.width, 0))
127
+ return dst
128
+
129
+ for image_list in zip(validation_control_images, flattened_batch_output):
130
+ predict_img = image_list[1].resize(image_list[0].size)
131
+ result = get_concat_h(image_list[0], predict_img)
132
+ ori_final_images.append(np.array(image_list[1]))
133
+ final_images.append(np.array(result))
134
+ outputs.append(np.array(predict_img))
135
+ write_mp4(ori_video_path, ori_final_images, fps=fps)
136
+ write_mp4(video_path, final_images, fps=fps)
137
+ output_path = output_folder + "/output.mp4"
138
+ write_mp4(output_path, outputs, fps=fps)
139
+
140
+
141
+ def load_images_from_folder_to_pil(folder):
142
+ images = []
143
+ valid_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"}
144
+
145
+ def frame_number(filename):
146
+ new_pattern_match = re.search("frame_(\\d+)_7fps", filename)
147
+ if new_pattern_match:
148
+ return int(new_pattern_match.group(1))
149
+ matches = re.findall("\\d+", filename)
150
+ if matches:
151
+ if matches[-1] == "0000" and len(matches) > 1:
152
+ return int(matches[-2])
153
+ return int(matches[-1])
154
+ return float("inf")
155
+
156
+ sorted_files = sorted(os.listdir(folder), key=frame_number)
157
+ for filename in sorted_files:
158
+ ext = os.path.splitext(filename)[1].lower()
159
+ if ext in valid_extensions:
160
+ img = Image.open(os.path.join(folder, filename)).convert("RGB")
161
+ images.append(img)
162
+ return images
163
+
164
+
165
+ def load_images_from_video_to_pil(video_path):
166
+ images = []
167
+ vr = VideoReader(video_path)
168
+ length = len(vr)
169
+ for idx in range(length):
170
+ frame = vr[idx].asnumpy()
171
+ images.append(Image.fromarray(frame))
172
+ return images
173
+
174
+
175
+ validation_control_images = load_images_from_video_to_pil('your_path')
176
+ prompt = 'Group of fishes swimming in aquarium.'
177
+ vctrl = VCtrlModel.from_pretrained(
178
+ paddlemix/vctrl-5b-t2v-canny,
179
+ low_cpu_mem_usage=True,
180
+ paddle_dtype=paddle.float16
181
+ )
182
+ pipeline = CogVideoXVCtrlPipeline.from_pretrained(
183
+ paddlemix/cogvideox-5b-vctrl,
184
+ vctrl=vctrl,
185
+ paddle_dtype=paddle.float16,
186
+ low_cpu_mem_usage=True,
187
+ map_location="cpu",
188
+ )
189
+ pipeline.scheduler = CogVideoXDDIMScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
190
+ pipeline.vae.enable_tiling()
191
+ pipeline.vae.enable_slicing()
192
+ task='canny'
193
+ final_result=[]
194
+ video = pipeline(
195
+ prompt=prompt,
196
+ num_inference_steps=25,
197
+ num_frames=49,
198
+ guidance_scale=35,
199
+ generator=paddle.Generator().manual_seed(42),
200
+ conditioning_frames=validation_control_images[:num_frames],
201
+ conditioning_frame_indices=list(range(num_frames)),
202
+ conditioning_scale=1.0,
203
+ width=720,
204
+ height=480,
205
+ task='canny',
206
+ conditioning_masks=validation_mask_images[:num_frames] if task == "mask" else None,
207
+ vctrl_layout_type='spacing',
208
+ ).frames[0]
209
+ final_result.append(video)
210
+ save_vid_side_by_side(final_result, validation_control_images[:num_frames], 'save.mp4', fps=30)
211
+ ```
212
+
213
+ ## 深入研究
214
+
215
+ 欢迎进入我们的 [github]("https://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl"),你将获得:
216
+
217
+ 1. 更加详细的技术细节介绍和代码解释。
218
+ 2. 控制条件的提取算法细节。
219
+ 3. 模型推理的详细代码。
220
+ 4. 项目更新日志动态,更多互动机会。
221
+ 5. PaddleMix工具链,帮助您更好的使用模型。
222
+
223
+ ## 引用
224
+
225
+ ```
226
+ @article{yang2024cogvideox,
227
+ title={VCtrl: Enabling Versatile Controls for Video Diffusion Models},
228
+ year={2025}
229
+ }
230
+ ```