Fill-Mask
Transformers
PyTorch
Portuguese
deberta-v2
albertina-pt*
albertina-100m-portuguese-ptpt
albertina-100m-portuguese-ptbr
albertina-900m-portuguese-ptpt
albertina-900m-portuguese-ptbr
albertina-1b5-portuguese-ptpt
albertina-1b5-portuguese-ptbr
bert
deberta
portuguese
encoder
foundation model
Inference Endpoints
jarodrigues
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -157,8 +157,8 @@ The model can be used by fine-tuning it for a specific task:
|
|
157 |
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
158 |
>>> from datasets import load_dataset
|
159 |
|
160 |
-
>>> model = AutoModelForSequenceClassification.from_pretrained("PORTULAN/albertina-ptpt-
|
161 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("PORTULAN/albertina-ptpt-
|
162 |
>>> dataset = load_dataset("PORTULAN/glue-ptpt", "rte")
|
163 |
|
164 |
>>> def tokenize_function(examples):
|
|
|
157 |
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
158 |
>>> from datasets import load_dataset
|
159 |
|
160 |
+
>>> model = AutoModelForSequenceClassification.from_pretrained("PORTULAN/albertina-1b5-portuguese-ptpt-encoder", num_labels=2)
|
161 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("PORTULAN/albertina-1b5-portuguese-ptpt-encoder")
|
162 |
>>> dataset = load_dataset("PORTULAN/glue-ptpt", "rte")
|
163 |
|
164 |
>>> def tokenize_function(examples):
|