Fill-Mask
Transformers
PyTorch
Portuguese
deberta-v2
albertina-pt*
albertina-100m-portuguese-ptpt
albertina-100m-portuguese-ptbr
albertina-900m-portuguese-ptpt
albertina-900m-portuguese-ptbr
albertina-1b5-portuguese-ptpt
albertina-1b5-portuguese-ptbr
bert
deberta
portuguese
encoder
foundation model
Inference Endpoints
jarodrigues
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -116,17 +116,19 @@ We opted for a learning rate of 1e-5 with linear decay and 10k warm-up steps.
|
|
116 |
The base model version was evaluated on downstream tasks, namely the translations into PT-PT of the English data sets used for a few of the tasks in the widely-used [GLUE benchmark](https://huggingface.co/datasets/glue).
|
117 |
|
118 |
|
119 |
-
## GLUE tasks translated
|
120 |
|
121 |
|
122 |
-
We resorted to [
|
123 |
-
We automatically translated the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) |
|
126 |
-
|---------------------------|----------------|----------------|-----------|-----------------|
|
127 |
-
| **Albertina 1.5B PT-PT** | **0.?** | 0. | **0. **| **0. ** |
|
128 |
-
| **Albertina PT-PT(900M)** | 0.8339 | 0.4225 | 0.9171 | 0.8801 |
|
129 |
-
| **Albertina 100M PT-PT** | 0.5848 | 0.5634 | 0.8793 | 0.8624 |
|
130 |
|
131 |
<br>
|
132 |
|
|
|
116 |
The base model version was evaluated on downstream tasks, namely the translations into PT-PT of the English data sets used for a few of the tasks in the widely-used [GLUE benchmark](https://huggingface.co/datasets/glue).
|
117 |
|
118 |
|
119 |
+
## GLUE and SUPERGLUE tasks translated
|
120 |
|
121 |
|
122 |
+
We resorted to [HyperGlue-PT](?), a **PT-PT version of the GLUE and SUPERGLUE** benchmark.
|
123 |
+
We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Translate](https://www.deepl.com/), which specifically provides translation from English to PT-PT as an option.
|
124 |
+
|
125 |
+
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy)
|
126 |
+
|---------------------------|----------------|----------------|-----------|-----------------|-----------------|---------|--------------|
|
127 |
+
| **Albertina 1.5B PT-PT** | **0.?** | 0. | **0. **| **0. ** | ? | | |
|
128 |
+
| **Albertina PT-PT(900M)** | 0.8339 | 0.4225 | 0.9171 | 0.8801 | 0.7300 | 0.4739 | 0.6782 | 0.8437
|
129 |
+
| **Albertina 100M PT-PT** | 0.5848 | 0.5634 | 0.8793 | 0.8624 | n.a. | 0.4734 | 0.6564 | 0.7700
|
130 |
+
|
131 |
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
<br>
|
134 |
|