Fill-Mask
Transformers
PyTorch
Portuguese
deberta-v2
albertina-pt*
albertina-100m-portuguese-ptpt
albertina-100m-portuguese-ptbr
albertina-900m-portuguese-ptpt
albertina-900m-portuguese-ptbr
albertina-1b5-portuguese-ptpt
albertina-1b5-portuguese-ptbr
bert
deberta
portuguese
encoder
foundation model
Inference Endpoints
jarodrigues
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -130,20 +130,6 @@ We resorted to [extraGLUE](https://huggingface.co/datasets/PORTULAN/extraglue),
|
|
130 |
We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Translate](https://www.deepl.com/), which specifically
|
131 |
provides translation from English to PTPT or PTBR as possible options.
|
132 |
|
133 |
-
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
134 |
-
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|
135 |
-
| [**Albertina 1.5B PTPT**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder) | **0.8809** | 0.4742 | 0.8457 | **0.9034** | **0.8433** | **0.7840** | **0.7688** | **0.8602** |
|
136 |
-
| [**Albertina 1.5B PTPT 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder-256) | 0.8809 | 0.5493 | 0.8752 | 0.8795 | 0.8400 | 0.5832 | 0.6791 | 0.8496 |
|
137 |
-
| [**Albertina 900M PTPT**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptpt-encoder) | 0.8339 | 0.4225 | **0.9171**| 0.8801 | 0.7033 | 0.6018 | 0.6728 | 0.8224 |
|
138 |
-
| [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) | 0.6919 | 0.4742 | 0.8047 | 0.8590 | n.a. | 0.4529 | 0.6481 | 0.7578 |
|
139 |
-
||||||||||
|
140 |
-
| **DeBERTa 1.5B (English)** | 0.8147 | 0.4554 | 0.8696 | 0.8557 | 0.5167 | 0.4901 | 0.6687 | 0.8347 |
|
141 |
-
| **DeBERTa 100M (English)** | 0.6029 | **0.5634** | 0.7802 | 0.8320 | n.a. | 0.4698 | 0.6368 | 0.6829 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
**para modelo PTBR**
|
147 |
|
148 |
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
149 |
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|
|
|
130 |
We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Translate](https://www.deepl.com/), which specifically
|
131 |
provides translation from English to PTPT or PTBR as possible options.
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
135 |
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|