|
import os |
|
from enum import Enum |
|
from pathlib import Path |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Union, Tuple |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers import AutoModelForCausalLM |
|
from transformers.models.auto import CONFIG_MAPPING |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.tokenization_utils_base import ( |
|
TextInput, |
|
TensorType, |
|
PaddingStrategy, |
|
PreTokenizedInput, |
|
TruncationStrategy |
|
) |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from .processor_mm import ( |
|
load_and_transform_image_data, |
|
load_and_transform_video_data, |
|
load_and_transform_audio_data |
|
) |
|
from .imagebind_model import * |
|
from .helpers import * |
|
from .multimodal_preprocessors import * |
|
from .transformer import * |
|
|
|
class ModalityType(Enum): |
|
TEXT = "text" |
|
IMAGE = "image" |
|
VIDEO = "video" |
|
AUDIO = "audio" |
|
VISION = "vision" |
|
|
|
def __str__(self): |
|
return self.value |
|
|
|
def __eq__(self, other): |
|
if isinstance(other, ModalityType): |
|
return self.value == other.value |
|
elif isinstance(other, str): |
|
return self.value == other |
|
return False |
|
|
|
def __hash__(self): |
|
return hash(self.value) |
|
|
|
_CONFIG_FOR_DOC = "AnyModelConfig" |
|
|
|
class AnyModelConfig(PretrainedConfig): |
|
model_type = "any_model" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
modality_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
image_token_index=128256, |
|
video_token_index=128257, |
|
audio_token_index=128258, |
|
projector_hidden_act="gelu", |
|
**kwargs, |
|
): |
|
|
|
if isinstance(text_config, dict): |
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" |
|
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) |
|
elif text_config is None: |
|
text_config = CONFIG_MAPPING["llama"]() |
|
|
|
self.modality_config = modality_config |
|
self.text_config = text_config |
|
self.ignore_index = ignore_index |
|
self.image_token_index = image_token_index |
|
self.video_token_index = video_token_index |
|
self.audio_token_index = audio_token_index |
|
self.projector_hidden_act = projector_hidden_act |
|
|
|
super().__init__( |
|
**kwargs, |
|
) |
|
|
|
class AnyModelProcessor(ProcessorMixin): |
|
|
|
|
|
attributes = ["tokenizer"] |
|
valid_kwargs = ["chat_template"] |
|
any_model_processor_class = "AnyModelProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, tokenizer=None, **kwargs): |
|
super().__init__(tokenizer, **kwargs) |
|
if self.tokenizer is not None: |
|
self.tokenizer.add_special_tokens({"additional_special_tokens": ["<image>", "<video>", "<audio>"]}) |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
data_paths: Union[str, List[str]] = None, |
|
modality: Optional[Union[ModalityType, List[ModalityType]]] = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> BatchFeature: |
|
|
|
if data_paths is not None: |
|
if modality is None: |
|
raise ValueError("modality must be specified when data_paths is provided") |
|
if isinstance(modality, list): |
|
assert len(set(modality)) == 1, "only one kind modality can be provided in a batch" |
|
modality = modality[0] |
|
|
|
proceesor_func = None |
|
if modality == ModalityType.IMAGE: |
|
proceesor_func = load_and_transform_image_data |
|
elif modality == ModalityType.VIDEO: |
|
proceesor_func = load_and_transform_video_data |
|
elif modality == ModalityType.AUDIO: |
|
proceesor_func = load_and_transform_audio_data |
|
else: |
|
raise ValueError("modality must be one of ModalityType.IMAGE, ModalityType.VIDEO, ModalityType.AUDIO") |
|
|
|
if isinstance(data_paths, str): |
|
pixel_values = proceesor_func(data_paths) |
|
else: |
|
pixel_values = torch.stack([proceesor_func(data_path) for data_path in data_paths], dim=0) |
|
else: |
|
pixel_values = None |
|
if text is None: |
|
text_inputs = {} |
|
else: |
|
text_inputs = self.tokenizer( |
|
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length |
|
) |
|
|
|
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values, "modality": modality}) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
feature_extractor_class_input_names = self.feature_extractor_class.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_class_input_names)) |
|
|
|
@dataclass |
|
|
|
class AnyModelCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for AnyModel causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
modality_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
modality_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
modality_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
modality: Optional[ModalityType] = None |
|
|
|
|
|
class AnyModelMultiModalProjector(nn.Module): |
|
def __init__(self, config: AnyModelConfig): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(config.modality_config["hidden_size"], config.text_config.hidden_size, bias=True) |
|
self.act = ACT2FN[config.projector_hidden_act] |
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
|
|
def forward(self, modality_features): |
|
hidden_states = self.linear_1(modality_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
class AnyModelPreTrainedModel(PreTrainedModel): |
|
config_class = AnyModelConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["AnyModelAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: AnyModelConfig): |
|
self.config = config |
|
super().__init__(config) |
|
|
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
|
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.language_model._supports_sdpa |
|
|
|
ANYMODEL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
The tensors corresponding to the input images. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`AnyModelProcessor`] uses |
|
[`CLIPImageProcessor`] for processing images). |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
class AnyModelForConditionalGeneration(AnyModelPreTrainedModel): |
|
def __init__(self, config: AnyModelConfig): |
|
super().__init__(config) |
|
|
|
self.image_projector = AnyModelMultiModalProjector(config) |
|
self.video_projector = AnyModelMultiModalProjector(config) |
|
self.audio_projector = AnyModelMultiModalProjector(config) |
|
self.language_model = AutoModelForCausalLM.from_config( |
|
config.text_config, attn_implementation=config._attn_implementation |
|
) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
|
|
self.modality_tower, _ = \ |
|
imagebind_huge(pretrained=True, store_path=os.path.join(Path(__file__).parent.absolute(), config.modality_config["imagebind_ckpt_path"])) |
|
self.modality_tower = self.modality_tower.to(self.language_model.device) |
|
self.modality_tower = self.modality_tower.to(self.language_model.dtype) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): |
|
num_images, num_image_patches, embed_dim = image_features.shape |
|
batch_size, sequence_length = input_ids.shape |
|
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) |
|
|
|
special_image_token_mask = input_ids == self.config.image_token_index |
|
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) |
|
|
|
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length |
|
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 |
|
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] |
|
if left_padding: |
|
new_token_positions += nb_image_pad[:, None] |
|
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
if labels is not None: |
|
final_labels = torch.full( |
|
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_image_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_image_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] |
|
if labels is not None: |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] |
|
|
|
|
|
image_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
image_to_overwrite[batch_indices, text_to_overwrite] = False |
|
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) |
|
|
|
if image_to_overwrite.sum() != image_features.shape[:-1].numel(): |
|
raise ValueError( |
|
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" |
|
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." |
|
) |
|
|
|
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= image_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
|
|
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) |
|
indices_to_mask = new_token_positions[batch_indices, pad_indices] |
|
|
|
final_embedding[batch_indices, indices_to_mask] = 0 |
|
|
|
if labels is None: |
|
final_labels = None |
|
|
|
return final_embedding, final_attention_mask, final_labels, position_ids |
|
|
|
def _merge_input_ids_with_video_features(self, video_features, inputs_embeds, input_ids, attention_mask, labels): |
|
num_videos, num_video_patches, embed_dim = video_features.shape |
|
batch_size, sequence_length = input_ids.shape |
|
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) |
|
|
|
special_video_token_mask = input_ids == self.config.video_token_index |
|
num_special_video_tokens = torch.sum(special_video_token_mask, dim=-1) |
|
|
|
max_embed_dim = (num_special_video_tokens.max() * (num_video_patches - 1)) + sequence_length |
|
batch_indices, non_video_indices = torch.where(input_ids != self.config.video_token_index) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_token_positions = torch.cumsum((special_video_token_mask * (num_video_patches - 1) + 1), -1) - 1 |
|
nb_video_pad = max_embed_dim - 1 - new_token_positions[:, -1] |
|
if left_padding: |
|
new_token_positions += nb_video_pad[:, None] |
|
text_to_overwrite = new_token_positions[batch_indices, non_video_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
if labels is not None: |
|
final_labels = torch.full( |
|
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_video_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_video_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_video_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_video_indices] |
|
if labels is not None: |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_video_indices] |
|
|
|
|
|
video_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
video_to_overwrite[batch_indices, text_to_overwrite] = False |
|
video_to_overwrite &= video_to_overwrite.cumsum(-1) - 1 >= nb_video_pad[:, None].to(target_device) |
|
|
|
if video_to_overwrite.sum() != video_features.shape[:-1].numel(): |
|
raise ValueError( |
|
f"The input provided to the model are wrong. The number of video tokens is {torch.sum(special_video_token_mask)} while" |
|
f" the number of video given to the model is {num_videos}. This prevents correct indexing and breaks batch generation." |
|
) |
|
|
|
final_embedding[video_to_overwrite] = video_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= video_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
|
|
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) |
|
indices_to_mask = new_token_positions[batch_indices, pad_indices] |
|
|
|
final_embedding[batch_indices, indices_to_mask] = 0 |
|
|
|
if labels is None: |
|
final_labels = None |
|
|
|
return final_embedding, final_attention_mask, final_labels, position_ids |
|
|
|
def _merge_input_ids_with_audio_features(self, audio_features, inputs_embeds, input_ids, attention_mask, labels): |
|
num_audios, num_audio_patches, embed_dim = audio_features.shape |
|
batch_size, sequence_length = input_ids.shape |
|
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) |
|
|
|
special_audio_token_mask = input_ids == self.config.audio_token_index |
|
num_special_audio_tokens = torch.sum(special_audio_token_mask, dim=-1) |
|
|
|
max_embed_dim = (num_special_audio_tokens.max() * (num_audio_patches - 1)) + sequence_length |
|
batch_indices, non_audio_indices = torch.where(input_ids != self.config.audio_token_index) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_token_positions = torch.cumsum((special_audio_token_mask * (num_audio_patches - 1) + 1), -1) - 1 |
|
nb_audio_pad = max_embed_dim - 1 - new_token_positions[:, -1] |
|
if left_padding: |
|
new_token_positions += nb_audio_pad[:, None] |
|
text_to_overwrite = new_token_positions[batch_indices, non_audio_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
if labels is not None: |
|
final_labels = torch.full( |
|
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_audio_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_audio_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_audio_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_audio_indices] |
|
if labels is not None: |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_audio_indices] |
|
|
|
|
|
audio_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
audio_to_overwrite[batch_indices, text_to_overwrite] = False |
|
audio_to_overwrite &= audio_to_overwrite.cumsum(-1) - 1 >= nb_audio_pad[:, None].to(target_device) |
|
|
|
if audio_to_overwrite.sum() != audio_features.shape[:-1].numel(): |
|
raise ValueError( |
|
f"The input provided to the model are wrong. The number of audio tokens is {torch.sum(special_audio_token_mask)} while" |
|
f" the number of audio given to the model is {num_audios}. This prevents correct indexing and breaks batch generation." |
|
) |
|
|
|
final_embedding[audio_to_overwrite] = audio_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= audio_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
|
|
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) |
|
indices_to_mask = new_token_positions[batch_indices, pad_indices] |
|
|
|
final_embedding[batch_indices, indices_to_mask] = 0 |
|
|
|
if labels is None: |
|
final_labels = None |
|
|
|
return final_embedding, final_attention_mask, final_labels, position_ids |
|
|
|
@add_start_docstrings_to_model_forward(ANYMODEL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=AnyModelCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values_1: torch.FloatTensor = None, |
|
pixel_values_2: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
modality: Optional[ModalityType] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[int] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, AnyModelCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if inputs_embeds is None: |
|
|
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
|
|
if pixel_values_1 is not None and pixel_values_1 is not None and input_ids.shape[1] != 1: |
|
assert modality is not None, "modality must be provided when pixel_values is not None" |
|
|
|
for i in range(2): |
|
pixel_values = pixel_values_1 if i == 0 else pixel_values_2 |
|
if modality[0][i] == ModalityType.IMAGE: |
|
modality_outputs = self.modality_tower({ |
|
str(ModalityType.VISION): pixel_values |
|
})[str(ModalityType.VISION)] |
|
features = self.image_projector(modality_outputs).unsqueeze(1) |
|
self.merge_input_ids_with_other_features = self._merge_input_ids_with_image_features |
|
elif modality[0][i] == ModalityType.VIDEO: |
|
modality_outputs = self.modality_tower({ |
|
str(ModalityType.VISION): pixel_values |
|
})[str(ModalityType.VISION)] |
|
features = self.video_projector(modality_outputs).unsqueeze(1) |
|
self.merge_input_ids_with_other_features = self._merge_input_ids_with_video_features |
|
elif modality[0][i] == ModalityType.AUDIO: |
|
modality_outputs = self.modality_tower({ |
|
str(ModalityType.AUDIO): pixel_values |
|
})[str(ModalityType.AUDIO)] |
|
features = self.audio_projector(modality_outputs).unsqueeze(1) |
|
self.merge_input_ids_with_other_features = self._merge_input_ids_with_audio_features |
|
elif modality[0][i] == ModalityType.TEXT: |
|
continue |
|
else: |
|
raise ValueError(f"modality {modality[i]} is not supported") |
|
|
|
inputs_embeds = inputs_embeds.to(features.dtype) |
|
inputs_embeds, attention_mask, labels, position_ids = self.merge_input_ids_with_other_features( |
|
features, inputs_embeds, input_ids, attention_mask, labels |
|
) |
|
|
|
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1) |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
shift_attention_mask = attention_mask[..., 1:] |
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return AnyModelCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
elif self.config.image_token_index in input_ids: |
|
input_ids = input_ids[:, input_ids.shape[1] - 1 :] |
|
|
|
|
|
if cache_length < past_length and attention_mask is not None: |
|
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"pixel_values": pixel_values, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def _reorder_cache(self, *args, **kwargs): |
|
return self.language_model._reorder_cache(*args, **kwargs) |
|
|
|
@dataclass |
|
class ScoreModelOutput(ModelOutput): |
|
"""Output of the score model.""" |
|
|
|
scores: torch.FloatTensor | None = None |
|
clipped_scores: torch.FloatTensor | None = None |
|
end_scores: torch.FloatTensor | None = None |
|
last_hidden_state: torch.FloatTensor | None = None |
|
clipped_states: torch.FloatTensor | None = None |
|
end_last_hidden_state: torch.FloatTensor | None = None |
|
end_index: torch.LongTensor | None = None |
|
|
|
class AnyRewardModel(AnyModelForConditionalGeneration): |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: AnyModelConfig): |
|
super().__init__(config) |
|
self.score_head = nn.Linear(4096, 1, bias=False) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor | None = None, |
|
attention_mask: torch.Tensor | None = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
outputs = super().forward( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
output_hidden_states=True, |
|
**kwargs, |
|
) |
|
|
|
last_hidden_state = outputs.hidden_states[-1] |
|
scores = self.score_head(last_hidden_state).float() |
|
B, _, _ = scores.size() |
|
|
|
end_index = -torch.ones((B,)) |
|
end_last_hidden_state = last_hidden_state[:, -1, :].unsqueeze(1) |
|
end_scores = self.score_head(end_last_hidden_state).float() |
|
end_last_hidden_state = end_last_hidden_state.squeeze(dim=1) |
|
end_scores = end_scores.squeeze(dim=1) |
|
|
|
return ScoreModelOutput( |
|
scores=scores, |
|
end_scores=end_scores, |
|
last_hidden_state=last_hidden_state, |
|
end_last_hidden_state=end_last_hidden_state, |
|
end_index=end_index, |
|
) |
|
|
|
from transformers import AutoConfig, AutoModel, AutoProcessor |
|
|
|
AutoConfig.register("any_model", AnyModelConfig) |
|
AutoModel.register(AnyModelConfig, AnyModelForConditionalGeneration) |
|
AutoModel.register(AnyModelConfig, AnyRewardModel) |
|
AutoProcessor.register("AnyModelProcessor", AnyModelProcessor) |