Delete sd_samplers_kdiffusion.py
Browse files- sd_samplers_kdiffusion.py +0 -477
sd_samplers_kdiffusion.py
DELETED
@@ -1,477 +0,0 @@
|
|
1 |
-
from collections import deque
|
2 |
-
import torch
|
3 |
-
import inspect
|
4 |
-
import k_diffusion.sampling
|
5 |
-
from modules import prompt_parser, devices, sd_samplers_common
|
6 |
-
|
7 |
-
from modules.shared import opts, state
|
8 |
-
import modules.shared as shared
|
9 |
-
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
10 |
-
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
|
11 |
-
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
|
12 |
-
|
13 |
-
samplers_k_diffusion = [
|
14 |
-
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
|
15 |
-
('Euler', 'sample_euler', ['k_euler'], {}),
|
16 |
-
('LMS', 'sample_lms', ['k_lms'], {}),
|
17 |
-
('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
|
18 |
-
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
|
19 |
-
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
|
20 |
-
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
|
21 |
-
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
|
22 |
-
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
|
23 |
-
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
|
24 |
-
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
|
25 |
-
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
|
26 |
-
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
27 |
-
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
28 |
-
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
29 |
-
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
|
30 |
-
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
31 |
-
('DPM++ 2M Karras Sharp v1', 'sample_dpmpp_2m_v1', ['k_dpmpp_2m_ka_v1'], {'scheduler': 'karras'}),
|
32 |
-
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
|
33 |
-
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
|
34 |
-
]
|
35 |
-
|
36 |
-
samplers_data_k_diffusion = [
|
37 |
-
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
38 |
-
for label, funcname, aliases, options in samplers_k_diffusion
|
39 |
-
if hasattr(k_diffusion.sampling, funcname)
|
40 |
-
]
|
41 |
-
|
42 |
-
sampler_extra_params = {
|
43 |
-
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
44 |
-
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
45 |
-
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
46 |
-
}
|
47 |
-
|
48 |
-
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
|
49 |
-
k_diffusion_scheduler = {
|
50 |
-
'Automatic': None,
|
51 |
-
'karras': k_diffusion.sampling.get_sigmas_karras,
|
52 |
-
'exponential': k_diffusion.sampling.get_sigmas_exponential,
|
53 |
-
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
def catenate_conds(conds):
|
58 |
-
if not isinstance(conds[0], dict):
|
59 |
-
return torch.cat(conds)
|
60 |
-
|
61 |
-
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
|
62 |
-
|
63 |
-
|
64 |
-
def subscript_cond(cond, a, b):
|
65 |
-
if not isinstance(cond, dict):
|
66 |
-
return cond[a:b]
|
67 |
-
|
68 |
-
return {key: vec[a:b] for key, vec in cond.items()}
|
69 |
-
|
70 |
-
|
71 |
-
def pad_cond(tensor, repeats, empty):
|
72 |
-
if not isinstance(tensor, dict):
|
73 |
-
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
|
74 |
-
|
75 |
-
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
|
76 |
-
return tensor
|
77 |
-
|
78 |
-
|
79 |
-
class CFGDenoiser(torch.nn.Module):
|
80 |
-
"""
|
81 |
-
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
|
82 |
-
that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
|
83 |
-
instead of one. Originally, the second prompt is just an empty string, but we use non-empty
|
84 |
-
negative prompt.
|
85 |
-
"""
|
86 |
-
|
87 |
-
def __init__(self, model):
|
88 |
-
super().__init__()
|
89 |
-
self.inner_model = model
|
90 |
-
self.mask = None
|
91 |
-
self.nmask = None
|
92 |
-
self.init_latent = None
|
93 |
-
self.step = 0
|
94 |
-
self.image_cfg_scale = None
|
95 |
-
self.padded_cond_uncond = False
|
96 |
-
|
97 |
-
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
|
98 |
-
denoised_uncond = x_out[-uncond.shape[0]:]
|
99 |
-
denoised = torch.clone(denoised_uncond)
|
100 |
-
|
101 |
-
for i, conds in enumerate(conds_list):
|
102 |
-
for cond_index, weight in conds:
|
103 |
-
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
104 |
-
|
105 |
-
return denoised
|
106 |
-
|
107 |
-
def combine_denoised_for_edit_model(self, x_out, cond_scale):
|
108 |
-
out_cond, out_img_cond, out_uncond = x_out.chunk(3)
|
109 |
-
denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
|
110 |
-
|
111 |
-
return denoised
|
112 |
-
|
113 |
-
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
|
114 |
-
if state.interrupted or state.skipped:
|
115 |
-
raise sd_samplers_common.InterruptedException
|
116 |
-
|
117 |
-
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
|
118 |
-
# so is_edit_model is set to False to support AND composition.
|
119 |
-
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
|
120 |
-
|
121 |
-
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
122 |
-
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
|
123 |
-
|
124 |
-
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
|
125 |
-
|
126 |
-
batch_size = len(conds_list)
|
127 |
-
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
128 |
-
|
129 |
-
if shared.sd_model.model.conditioning_key == "crossattn-adm":
|
130 |
-
image_uncond = torch.zeros_like(image_cond)
|
131 |
-
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
|
132 |
-
else:
|
133 |
-
image_uncond = image_cond
|
134 |
-
if isinstance(uncond, dict):
|
135 |
-
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
|
136 |
-
else:
|
137 |
-
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
|
138 |
-
|
139 |
-
if not is_edit_model:
|
140 |
-
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
141 |
-
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
142 |
-
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
|
143 |
-
else:
|
144 |
-
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
|
145 |
-
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
|
146 |
-
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
|
147 |
-
|
148 |
-
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
|
149 |
-
cfg_denoiser_callback(denoiser_params)
|
150 |
-
x_in = denoiser_params.x
|
151 |
-
image_cond_in = denoiser_params.image_cond
|
152 |
-
sigma_in = denoiser_params.sigma
|
153 |
-
tensor = denoiser_params.text_cond
|
154 |
-
uncond = denoiser_params.text_uncond
|
155 |
-
skip_uncond = False
|
156 |
-
|
157 |
-
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
|
158 |
-
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
|
159 |
-
skip_uncond = True
|
160 |
-
x_in = x_in[:-batch_size]
|
161 |
-
sigma_in = sigma_in[:-batch_size]
|
162 |
-
|
163 |
-
self.padded_cond_uncond = False
|
164 |
-
if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
|
165 |
-
empty = shared.sd_model.cond_stage_model_empty_prompt
|
166 |
-
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
|
167 |
-
|
168 |
-
if num_repeats < 0:
|
169 |
-
tensor = pad_cond(tensor, -num_repeats, empty)
|
170 |
-
self.padded_cond_uncond = True
|
171 |
-
elif num_repeats > 0:
|
172 |
-
uncond = pad_cond(uncond, num_repeats, empty)
|
173 |
-
self.padded_cond_uncond = True
|
174 |
-
|
175 |
-
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
|
176 |
-
if is_edit_model:
|
177 |
-
cond_in = catenate_conds([tensor, uncond, uncond])
|
178 |
-
elif skip_uncond:
|
179 |
-
cond_in = tensor
|
180 |
-
else:
|
181 |
-
cond_in = catenate_conds([tensor, uncond])
|
182 |
-
|
183 |
-
if shared.batch_cond_uncond:
|
184 |
-
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
|
185 |
-
else:
|
186 |
-
x_out = torch.zeros_like(x_in)
|
187 |
-
for batch_offset in range(0, x_out.shape[0], batch_size):
|
188 |
-
a = batch_offset
|
189 |
-
b = a + batch_size
|
190 |
-
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
|
191 |
-
else:
|
192 |
-
x_out = torch.zeros_like(x_in)
|
193 |
-
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
|
194 |
-
for batch_offset in range(0, tensor.shape[0], batch_size):
|
195 |
-
a = batch_offset
|
196 |
-
b = min(a + batch_size, tensor.shape[0])
|
197 |
-
|
198 |
-
if not is_edit_model:
|
199 |
-
c_crossattn = subscript_cond(tensor, a, b)
|
200 |
-
else:
|
201 |
-
c_crossattn = torch.cat([tensor[a:b]], uncond)
|
202 |
-
|
203 |
-
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
|
204 |
-
|
205 |
-
if not skip_uncond:
|
206 |
-
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
|
207 |
-
|
208 |
-
denoised_image_indexes = [x[0][0] for x in conds_list]
|
209 |
-
if skip_uncond:
|
210 |
-
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
|
211 |
-
x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
|
212 |
-
|
213 |
-
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
|
214 |
-
cfg_denoised_callback(denoised_params)
|
215 |
-
|
216 |
-
devices.test_for_nans(x_out, "unet")
|
217 |
-
|
218 |
-
if opts.live_preview_content == "Prompt":
|
219 |
-
sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
|
220 |
-
elif opts.live_preview_content == "Negative prompt":
|
221 |
-
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
|
222 |
-
|
223 |
-
if is_edit_model:
|
224 |
-
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
|
225 |
-
elif skip_uncond:
|
226 |
-
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
|
227 |
-
else:
|
228 |
-
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
229 |
-
|
230 |
-
if self.mask is not None:
|
231 |
-
denoised = self.init_latent * self.mask + self.nmask * denoised
|
232 |
-
|
233 |
-
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
|
234 |
-
cfg_after_cfg_callback(after_cfg_callback_params)
|
235 |
-
denoised = after_cfg_callback_params.x
|
236 |
-
|
237 |
-
self.step += 1
|
238 |
-
return denoised
|
239 |
-
|
240 |
-
|
241 |
-
class TorchHijack:
|
242 |
-
def __init__(self, sampler_noises):
|
243 |
-
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
|
244 |
-
# implementation.
|
245 |
-
self.sampler_noises = deque(sampler_noises)
|
246 |
-
|
247 |
-
def __getattr__(self, item):
|
248 |
-
if item == 'randn_like':
|
249 |
-
return self.randn_like
|
250 |
-
|
251 |
-
if hasattr(torch, item):
|
252 |
-
return getattr(torch, item)
|
253 |
-
|
254 |
-
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
|
255 |
-
|
256 |
-
def randn_like(self, x):
|
257 |
-
if self.sampler_noises:
|
258 |
-
noise = self.sampler_noises.popleft()
|
259 |
-
if noise.shape == x.shape:
|
260 |
-
return noise
|
261 |
-
|
262 |
-
if opts.randn_source == "CPU" or x.device.type == 'mps':
|
263 |
-
return torch.randn_like(x, device=devices.cpu).to(x.device)
|
264 |
-
else:
|
265 |
-
return torch.randn_like(x)
|
266 |
-
|
267 |
-
|
268 |
-
class KDiffusionSampler:
|
269 |
-
def __init__(self, funcname, sd_model):
|
270 |
-
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
271 |
-
|
272 |
-
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
273 |
-
self.funcname = funcname
|
274 |
-
self.func = getattr(k_diffusion.sampling, self.funcname)
|
275 |
-
self.extra_params = sampler_extra_params.get(funcname, [])
|
276 |
-
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
277 |
-
self.sampler_noises = None
|
278 |
-
self.stop_at = None
|
279 |
-
self.eta = None
|
280 |
-
self.config = None # set by the function calling the constructor
|
281 |
-
self.last_latent = None
|
282 |
-
self.s_min_uncond = None
|
283 |
-
|
284 |
-
self.conditioning_key = sd_model.model.conditioning_key
|
285 |
-
|
286 |
-
def callback_state(self, d):
|
287 |
-
step = d['i']
|
288 |
-
latent = d["denoised"]
|
289 |
-
if opts.live_preview_content == "Combined":
|
290 |
-
sd_samplers_common.store_latent(latent)
|
291 |
-
self.last_latent = latent
|
292 |
-
|
293 |
-
if self.stop_at is not None and step > self.stop_at:
|
294 |
-
raise sd_samplers_common.InterruptedException
|
295 |
-
|
296 |
-
state.sampling_step = step
|
297 |
-
shared.total_tqdm.update()
|
298 |
-
|
299 |
-
def launch_sampling(self, steps, func):
|
300 |
-
state.sampling_steps = steps
|
301 |
-
state.sampling_step = 0
|
302 |
-
|
303 |
-
try:
|
304 |
-
return func()
|
305 |
-
except RecursionError:
|
306 |
-
print(
|
307 |
-
'Encountered RecursionError during sampling, returning last latent. '
|
308 |
-
'rho >5 with a polyexponential scheduler may cause this error. '
|
309 |
-
'You should try to use a smaller rho value instead.'
|
310 |
-
)
|
311 |
-
return self.last_latent
|
312 |
-
except sd_samplers_common.InterruptedException:
|
313 |
-
return self.last_latent
|
314 |
-
|
315 |
-
def number_of_needed_noises(self, p):
|
316 |
-
return p.steps
|
317 |
-
|
318 |
-
def initialize(self, p):
|
319 |
-
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
320 |
-
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
321 |
-
self.model_wrap_cfg.step = 0
|
322 |
-
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
|
323 |
-
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
|
324 |
-
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
|
325 |
-
|
326 |
-
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
|
327 |
-
|
328 |
-
extra_params_kwargs = {}
|
329 |
-
for param_name in self.extra_params:
|
330 |
-
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
|
331 |
-
extra_params_kwargs[param_name] = getattr(p, param_name)
|
332 |
-
|
333 |
-
if 'eta' in inspect.signature(self.func).parameters:
|
334 |
-
if self.eta != 1.0:
|
335 |
-
p.extra_generation_params["Eta"] = self.eta
|
336 |
-
|
337 |
-
extra_params_kwargs['eta'] = self.eta
|
338 |
-
|
339 |
-
return extra_params_kwargs
|
340 |
-
|
341 |
-
def get_sigmas(self, p, steps):
|
342 |
-
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
|
343 |
-
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
|
344 |
-
discard_next_to_last_sigma = True
|
345 |
-
p.extra_generation_params["Discard penultimate sigma"] = True
|
346 |
-
|
347 |
-
steps += 1 if discard_next_to_last_sigma else 0
|
348 |
-
|
349 |
-
if p.sampler_noise_scheduler_override:
|
350 |
-
sigmas = p.sampler_noise_scheduler_override(steps)
|
351 |
-
elif opts.k_sched_type != "Automatic":
|
352 |
-
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
353 |
-
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
|
354 |
-
sigmas_kwargs = {
|
355 |
-
'sigma_min': sigma_min,
|
356 |
-
'sigma_max': sigma_max,
|
357 |
-
}
|
358 |
-
|
359 |
-
sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
|
360 |
-
p.extra_generation_params["Schedule type"] = opts.k_sched_type
|
361 |
-
|
362 |
-
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
|
363 |
-
sigmas_kwargs['sigma_min'] = opts.sigma_min
|
364 |
-
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
|
365 |
-
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
|
366 |
-
sigmas_kwargs['sigma_max'] = opts.sigma_max
|
367 |
-
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
|
368 |
-
|
369 |
-
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
|
370 |
-
|
371 |
-
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
|
372 |
-
sigmas_kwargs['rho'] = opts.rho
|
373 |
-
p.extra_generation_params["Schedule rho"] = opts.rho
|
374 |
-
|
375 |
-
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
|
376 |
-
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
377 |
-
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
378 |
-
|
379 |
-
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
|
380 |
-
else:
|
381 |
-
sigmas = self.model_wrap.get_sigmas(steps)
|
382 |
-
|
383 |
-
if discard_next_to_last_sigma:
|
384 |
-
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
385 |
-
|
386 |
-
return sigmas
|
387 |
-
|
388 |
-
def create_noise_sampler(self, x, sigmas, p):
|
389 |
-
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
|
390 |
-
if shared.opts.no_dpmpp_sde_batch_determinism:
|
391 |
-
return None
|
392 |
-
|
393 |
-
from k_diffusion.sampling import BrownianTreeNoiseSampler
|
394 |
-
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
395 |
-
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
|
396 |
-
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
|
397 |
-
|
398 |
-
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
399 |
-
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
|
400 |
-
|
401 |
-
sigmas = self.get_sigmas(p, steps)
|
402 |
-
|
403 |
-
sigma_sched = sigmas[steps - t_enc - 1:]
|
404 |
-
xi = x + noise * sigma_sched[0]
|
405 |
-
|
406 |
-
extra_params_kwargs = self.initialize(p)
|
407 |
-
parameters = inspect.signature(self.func).parameters
|
408 |
-
|
409 |
-
if 'sigma_min' in parameters:
|
410 |
-
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
411 |
-
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
|
412 |
-
if 'sigma_max' in parameters:
|
413 |
-
extra_params_kwargs['sigma_max'] = sigma_sched[0]
|
414 |
-
if 'n' in parameters:
|
415 |
-
extra_params_kwargs['n'] = len(sigma_sched) - 1
|
416 |
-
if 'sigma_sched' in parameters:
|
417 |
-
extra_params_kwargs['sigma_sched'] = sigma_sched
|
418 |
-
if 'sigmas' in parameters:
|
419 |
-
extra_params_kwargs['sigmas'] = sigma_sched
|
420 |
-
|
421 |
-
if self.config.options.get('brownian_noise', False):
|
422 |
-
noise_sampler = self.create_noise_sampler(x, sigmas, p)
|
423 |
-
extra_params_kwargs['noise_sampler'] = noise_sampler
|
424 |
-
|
425 |
-
self.model_wrap_cfg.init_latent = x
|
426 |
-
self.last_latent = x
|
427 |
-
extra_args = {
|
428 |
-
'cond': conditioning,
|
429 |
-
'image_cond': image_conditioning,
|
430 |
-
'uncond': unconditional_conditioning,
|
431 |
-
'cond_scale': p.cfg_scale,
|
432 |
-
's_min_uncond': self.s_min_uncond
|
433 |
-
}
|
434 |
-
|
435 |
-
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
436 |
-
|
437 |
-
if self.model_wrap_cfg.padded_cond_uncond:
|
438 |
-
p.extra_generation_params["Pad conds"] = True
|
439 |
-
|
440 |
-
return samples
|
441 |
-
|
442 |
-
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
443 |
-
steps = steps or p.steps
|
444 |
-
|
445 |
-
sigmas = self.get_sigmas(p, steps)
|
446 |
-
|
447 |
-
x = x * sigmas[0]
|
448 |
-
|
449 |
-
extra_params_kwargs = self.initialize(p)
|
450 |
-
parameters = inspect.signature(self.func).parameters
|
451 |
-
|
452 |
-
if 'sigma_min' in parameters:
|
453 |
-
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
|
454 |
-
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
|
455 |
-
if 'n' in parameters:
|
456 |
-
extra_params_kwargs['n'] = steps
|
457 |
-
else:
|
458 |
-
extra_params_kwargs['sigmas'] = sigmas
|
459 |
-
|
460 |
-
if self.config.options.get('brownian_noise', False):
|
461 |
-
noise_sampler = self.create_noise_sampler(x, sigmas, p)
|
462 |
-
extra_params_kwargs['noise_sampler'] = noise_sampler
|
463 |
-
|
464 |
-
self.last_latent = x
|
465 |
-
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
466 |
-
'cond': conditioning,
|
467 |
-
'image_cond': image_conditioning,
|
468 |
-
'uncond': unconditional_conditioning,
|
469 |
-
'cond_scale': p.cfg_scale,
|
470 |
-
's_min_uncond': self.s_min_uncond
|
471 |
-
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
472 |
-
|
473 |
-
if self.model_wrap_cfg.padded_cond_uncond:
|
474 |
-
p.extra_generation_params["Pad conds"] = True
|
475 |
-
|
476 |
-
return samples
|
477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|