Outimus commited on
Commit
9998c9d
·
verified ·
1 Parent(s): 0dfb626

Delete sd_samplers_kdiffusion.py

Browse files
Files changed (1) hide show
  1. sd_samplers_kdiffusion.py +0 -477
sd_samplers_kdiffusion.py DELETED
@@ -1,477 +0,0 @@
1
- from collections import deque
2
- import torch
3
- import inspect
4
- import k_diffusion.sampling
5
- from modules import prompt_parser, devices, sd_samplers_common
6
-
7
- from modules.shared import opts, state
8
- import modules.shared as shared
9
- from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
10
- from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
11
- from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
12
-
13
- samplers_k_diffusion = [
14
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
15
- ('Euler', 'sample_euler', ['k_euler'], {}),
16
- ('LMS', 'sample_lms', ['k_lms'], {}),
17
- ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
18
- ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
19
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
20
- ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
21
- ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
22
- ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
23
- ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
24
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
25
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
26
- ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
27
- ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
28
- ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
29
- ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
30
- ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
31
- ('DPM++ 2M Karras Sharp v1', 'sample_dpmpp_2m_v1', ['k_dpmpp_2m_ka_v1'], {'scheduler': 'karras'}),
32
- ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
33
- ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
34
- ]
35
-
36
- samplers_data_k_diffusion = [
37
- sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
38
- for label, funcname, aliases, options in samplers_k_diffusion
39
- if hasattr(k_diffusion.sampling, funcname)
40
- ]
41
-
42
- sampler_extra_params = {
43
- 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
44
- 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
45
- 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
46
- }
47
-
48
- k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
49
- k_diffusion_scheduler = {
50
- 'Automatic': None,
51
- 'karras': k_diffusion.sampling.get_sigmas_karras,
52
- 'exponential': k_diffusion.sampling.get_sigmas_exponential,
53
- 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
54
- }
55
-
56
-
57
- def catenate_conds(conds):
58
- if not isinstance(conds[0], dict):
59
- return torch.cat(conds)
60
-
61
- return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
62
-
63
-
64
- def subscript_cond(cond, a, b):
65
- if not isinstance(cond, dict):
66
- return cond[a:b]
67
-
68
- return {key: vec[a:b] for key, vec in cond.items()}
69
-
70
-
71
- def pad_cond(tensor, repeats, empty):
72
- if not isinstance(tensor, dict):
73
- return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
74
-
75
- tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
76
- return tensor
77
-
78
-
79
- class CFGDenoiser(torch.nn.Module):
80
- """
81
- Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
82
- that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
83
- instead of one. Originally, the second prompt is just an empty string, but we use non-empty
84
- negative prompt.
85
- """
86
-
87
- def __init__(self, model):
88
- super().__init__()
89
- self.inner_model = model
90
- self.mask = None
91
- self.nmask = None
92
- self.init_latent = None
93
- self.step = 0
94
- self.image_cfg_scale = None
95
- self.padded_cond_uncond = False
96
-
97
- def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
98
- denoised_uncond = x_out[-uncond.shape[0]:]
99
- denoised = torch.clone(denoised_uncond)
100
-
101
- for i, conds in enumerate(conds_list):
102
- for cond_index, weight in conds:
103
- denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
104
-
105
- return denoised
106
-
107
- def combine_denoised_for_edit_model(self, x_out, cond_scale):
108
- out_cond, out_img_cond, out_uncond = x_out.chunk(3)
109
- denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
110
-
111
- return denoised
112
-
113
- def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
114
- if state.interrupted or state.skipped:
115
- raise sd_samplers_common.InterruptedException
116
-
117
- # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
118
- # so is_edit_model is set to False to support AND composition.
119
- is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
120
-
121
- conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
122
- uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
123
-
124
- assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
125
-
126
- batch_size = len(conds_list)
127
- repeats = [len(conds_list[i]) for i in range(batch_size)]
128
-
129
- if shared.sd_model.model.conditioning_key == "crossattn-adm":
130
- image_uncond = torch.zeros_like(image_cond)
131
- make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
132
- else:
133
- image_uncond = image_cond
134
- if isinstance(uncond, dict):
135
- make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
136
- else:
137
- make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
138
-
139
- if not is_edit_model:
140
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
141
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
142
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
143
- else:
144
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
145
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
146
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
147
-
148
- denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
149
- cfg_denoiser_callback(denoiser_params)
150
- x_in = denoiser_params.x
151
- image_cond_in = denoiser_params.image_cond
152
- sigma_in = denoiser_params.sigma
153
- tensor = denoiser_params.text_cond
154
- uncond = denoiser_params.text_uncond
155
- skip_uncond = False
156
-
157
- # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
158
- if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
159
- skip_uncond = True
160
- x_in = x_in[:-batch_size]
161
- sigma_in = sigma_in[:-batch_size]
162
-
163
- self.padded_cond_uncond = False
164
- if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
165
- empty = shared.sd_model.cond_stage_model_empty_prompt
166
- num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
167
-
168
- if num_repeats < 0:
169
- tensor = pad_cond(tensor, -num_repeats, empty)
170
- self.padded_cond_uncond = True
171
- elif num_repeats > 0:
172
- uncond = pad_cond(uncond, num_repeats, empty)
173
- self.padded_cond_uncond = True
174
-
175
- if tensor.shape[1] == uncond.shape[1] or skip_uncond:
176
- if is_edit_model:
177
- cond_in = catenate_conds([tensor, uncond, uncond])
178
- elif skip_uncond:
179
- cond_in = tensor
180
- else:
181
- cond_in = catenate_conds([tensor, uncond])
182
-
183
- if shared.batch_cond_uncond:
184
- x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
185
- else:
186
- x_out = torch.zeros_like(x_in)
187
- for batch_offset in range(0, x_out.shape[0], batch_size):
188
- a = batch_offset
189
- b = a + batch_size
190
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
191
- else:
192
- x_out = torch.zeros_like(x_in)
193
- batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
194
- for batch_offset in range(0, tensor.shape[0], batch_size):
195
- a = batch_offset
196
- b = min(a + batch_size, tensor.shape[0])
197
-
198
- if not is_edit_model:
199
- c_crossattn = subscript_cond(tensor, a, b)
200
- else:
201
- c_crossattn = torch.cat([tensor[a:b]], uncond)
202
-
203
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
204
-
205
- if not skip_uncond:
206
- x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
207
-
208
- denoised_image_indexes = [x[0][0] for x in conds_list]
209
- if skip_uncond:
210
- fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
211
- x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
212
-
213
- denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
214
- cfg_denoised_callback(denoised_params)
215
-
216
- devices.test_for_nans(x_out, "unet")
217
-
218
- if opts.live_preview_content == "Prompt":
219
- sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
220
- elif opts.live_preview_content == "Negative prompt":
221
- sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
222
-
223
- if is_edit_model:
224
- denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
225
- elif skip_uncond:
226
- denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
227
- else:
228
- denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
229
-
230
- if self.mask is not None:
231
- denoised = self.init_latent * self.mask + self.nmask * denoised
232
-
233
- after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
234
- cfg_after_cfg_callback(after_cfg_callback_params)
235
- denoised = after_cfg_callback_params.x
236
-
237
- self.step += 1
238
- return denoised
239
-
240
-
241
- class TorchHijack:
242
- def __init__(self, sampler_noises):
243
- # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
244
- # implementation.
245
- self.sampler_noises = deque(sampler_noises)
246
-
247
- def __getattr__(self, item):
248
- if item == 'randn_like':
249
- return self.randn_like
250
-
251
- if hasattr(torch, item):
252
- return getattr(torch, item)
253
-
254
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
255
-
256
- def randn_like(self, x):
257
- if self.sampler_noises:
258
- noise = self.sampler_noises.popleft()
259
- if noise.shape == x.shape:
260
- return noise
261
-
262
- if opts.randn_source == "CPU" or x.device.type == 'mps':
263
- return torch.randn_like(x, device=devices.cpu).to(x.device)
264
- else:
265
- return torch.randn_like(x)
266
-
267
-
268
- class KDiffusionSampler:
269
- def __init__(self, funcname, sd_model):
270
- denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
271
-
272
- self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
273
- self.funcname = funcname
274
- self.func = getattr(k_diffusion.sampling, self.funcname)
275
- self.extra_params = sampler_extra_params.get(funcname, [])
276
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
277
- self.sampler_noises = None
278
- self.stop_at = None
279
- self.eta = None
280
- self.config = None # set by the function calling the constructor
281
- self.last_latent = None
282
- self.s_min_uncond = None
283
-
284
- self.conditioning_key = sd_model.model.conditioning_key
285
-
286
- def callback_state(self, d):
287
- step = d['i']
288
- latent = d["denoised"]
289
- if opts.live_preview_content == "Combined":
290
- sd_samplers_common.store_latent(latent)
291
- self.last_latent = latent
292
-
293
- if self.stop_at is not None and step > self.stop_at:
294
- raise sd_samplers_common.InterruptedException
295
-
296
- state.sampling_step = step
297
- shared.total_tqdm.update()
298
-
299
- def launch_sampling(self, steps, func):
300
- state.sampling_steps = steps
301
- state.sampling_step = 0
302
-
303
- try:
304
- return func()
305
- except RecursionError:
306
- print(
307
- 'Encountered RecursionError during sampling, returning last latent. '
308
- 'rho >5 with a polyexponential scheduler may cause this error. '
309
- 'You should try to use a smaller rho value instead.'
310
- )
311
- return self.last_latent
312
- except sd_samplers_common.InterruptedException:
313
- return self.last_latent
314
-
315
- def number_of_needed_noises(self, p):
316
- return p.steps
317
-
318
- def initialize(self, p):
319
- self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
320
- self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
321
- self.model_wrap_cfg.step = 0
322
- self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
323
- self.eta = p.eta if p.eta is not None else opts.eta_ancestral
324
- self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
325
-
326
- k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
327
-
328
- extra_params_kwargs = {}
329
- for param_name in self.extra_params:
330
- if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
331
- extra_params_kwargs[param_name] = getattr(p, param_name)
332
-
333
- if 'eta' in inspect.signature(self.func).parameters:
334
- if self.eta != 1.0:
335
- p.extra_generation_params["Eta"] = self.eta
336
-
337
- extra_params_kwargs['eta'] = self.eta
338
-
339
- return extra_params_kwargs
340
-
341
- def get_sigmas(self, p, steps):
342
- discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
343
- if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
344
- discard_next_to_last_sigma = True
345
- p.extra_generation_params["Discard penultimate sigma"] = True
346
-
347
- steps += 1 if discard_next_to_last_sigma else 0
348
-
349
- if p.sampler_noise_scheduler_override:
350
- sigmas = p.sampler_noise_scheduler_override(steps)
351
- elif opts.k_sched_type != "Automatic":
352
- m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
353
- sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
354
- sigmas_kwargs = {
355
- 'sigma_min': sigma_min,
356
- 'sigma_max': sigma_max,
357
- }
358
-
359
- sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
360
- p.extra_generation_params["Schedule type"] = opts.k_sched_type
361
-
362
- if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
363
- sigmas_kwargs['sigma_min'] = opts.sigma_min
364
- p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
365
- if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
366
- sigmas_kwargs['sigma_max'] = opts.sigma_max
367
- p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
368
-
369
- default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
370
-
371
- if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
372
- sigmas_kwargs['rho'] = opts.rho
373
- p.extra_generation_params["Schedule rho"] = opts.rho
374
-
375
- sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
376
- elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
377
- sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
378
-
379
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
380
- else:
381
- sigmas = self.model_wrap.get_sigmas(steps)
382
-
383
- if discard_next_to_last_sigma:
384
- sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
385
-
386
- return sigmas
387
-
388
- def create_noise_sampler(self, x, sigmas, p):
389
- """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
390
- if shared.opts.no_dpmpp_sde_batch_determinism:
391
- return None
392
-
393
- from k_diffusion.sampling import BrownianTreeNoiseSampler
394
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
395
- current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
396
- return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
397
-
398
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
399
- steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
400
-
401
- sigmas = self.get_sigmas(p, steps)
402
-
403
- sigma_sched = sigmas[steps - t_enc - 1:]
404
- xi = x + noise * sigma_sched[0]
405
-
406
- extra_params_kwargs = self.initialize(p)
407
- parameters = inspect.signature(self.func).parameters
408
-
409
- if 'sigma_min' in parameters:
410
- ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
411
- extra_params_kwargs['sigma_min'] = sigma_sched[-2]
412
- if 'sigma_max' in parameters:
413
- extra_params_kwargs['sigma_max'] = sigma_sched[0]
414
- if 'n' in parameters:
415
- extra_params_kwargs['n'] = len(sigma_sched) - 1
416
- if 'sigma_sched' in parameters:
417
- extra_params_kwargs['sigma_sched'] = sigma_sched
418
- if 'sigmas' in parameters:
419
- extra_params_kwargs['sigmas'] = sigma_sched
420
-
421
- if self.config.options.get('brownian_noise', False):
422
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
423
- extra_params_kwargs['noise_sampler'] = noise_sampler
424
-
425
- self.model_wrap_cfg.init_latent = x
426
- self.last_latent = x
427
- extra_args = {
428
- 'cond': conditioning,
429
- 'image_cond': image_conditioning,
430
- 'uncond': unconditional_conditioning,
431
- 'cond_scale': p.cfg_scale,
432
- 's_min_uncond': self.s_min_uncond
433
- }
434
-
435
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
436
-
437
- if self.model_wrap_cfg.padded_cond_uncond:
438
- p.extra_generation_params["Pad conds"] = True
439
-
440
- return samples
441
-
442
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
443
- steps = steps or p.steps
444
-
445
- sigmas = self.get_sigmas(p, steps)
446
-
447
- x = x * sigmas[0]
448
-
449
- extra_params_kwargs = self.initialize(p)
450
- parameters = inspect.signature(self.func).parameters
451
-
452
- if 'sigma_min' in parameters:
453
- extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
454
- extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
455
- if 'n' in parameters:
456
- extra_params_kwargs['n'] = steps
457
- else:
458
- extra_params_kwargs['sigmas'] = sigmas
459
-
460
- if self.config.options.get('brownian_noise', False):
461
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
462
- extra_params_kwargs['noise_sampler'] = noise_sampler
463
-
464
- self.last_latent = x
465
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
466
- 'cond': conditioning,
467
- 'image_cond': image_conditioning,
468
- 'uncond': unconditional_conditioning,
469
- 'cond_scale': p.cfg_scale,
470
- 's_min_uncond': self.s_min_uncond
471
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
472
-
473
- if self.model_wrap_cfg.padded_cond_uncond:
474
- p.extra_generation_params["Pad conds"] = True
475
-
476
- return samples
477
-