|
from collections import deque |
|
import torch |
|
import inspect |
|
import k_diffusion.sampling |
|
from modules import prompt_parser, devices, sd_samplers_common |
|
|
|
from modules.shared import opts, state |
|
import modules.shared as shared |
|
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback |
|
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback |
|
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback |
|
|
|
samplers_k_diffusion = [ |
|
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}), |
|
('Euler', 'sample_euler', ['k_euler'], {}), |
|
('LMS', 'sample_lms', ['k_lms'], {}), |
|
('Heun', 'sample_heun', ['k_heun'], {"second_order": True}), |
|
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), |
|
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}), |
|
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}), |
|
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), |
|
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}), |
|
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}), |
|
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}), |
|
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}), |
|
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), |
|
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), |
|
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), |
|
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}), |
|
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), |
|
('DPM++ 2M Karras Sharp v1', 'sample_dpmpp_2m_v1', ['k_dpmpp_2m_ka_v1'], {'scheduler': 'karras'}), |
|
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}), |
|
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}), |
|
] |
|
|
|
samplers_data_k_diffusion = [ |
|
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) |
|
for label, funcname, aliases, options in samplers_k_diffusion |
|
if hasattr(k_diffusion.sampling, funcname) |
|
] |
|
|
|
sampler_extra_params = { |
|
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], |
|
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], |
|
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], |
|
} |
|
|
|
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion} |
|
k_diffusion_scheduler = { |
|
'Automatic': None, |
|
'karras': k_diffusion.sampling.get_sigmas_karras, |
|
'exponential': k_diffusion.sampling.get_sigmas_exponential, |
|
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential |
|
} |
|
|
|
|
|
def catenate_conds(conds): |
|
if not isinstance(conds[0], dict): |
|
return torch.cat(conds) |
|
|
|
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()} |
|
|
|
|
|
def subscript_cond(cond, a, b): |
|
if not isinstance(cond, dict): |
|
return cond[a:b] |
|
|
|
return {key: vec[a:b] for key, vec in cond.items()} |
|
|
|
|
|
def pad_cond(tensor, repeats, empty): |
|
if not isinstance(tensor, dict): |
|
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1) |
|
|
|
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty) |
|
return tensor |
|
|
|
|
|
class CFGDenoiser(torch.nn.Module): |
|
""" |
|
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) |
|
that can take a noisy picture and produce a noise-free picture using two guidances (prompts) |
|
instead of one. Originally, the second prompt is just an empty string, but we use non-empty |
|
negative prompt. |
|
""" |
|
|
|
def __init__(self, model): |
|
super().__init__() |
|
self.inner_model = model |
|
self.mask = None |
|
self.nmask = None |
|
self.init_latent = None |
|
self.step = 0 |
|
self.image_cfg_scale = None |
|
self.padded_cond_uncond = False |
|
|
|
def combine_denoised(self, x_out, conds_list, uncond, cond_scale): |
|
denoised_uncond = x_out[-uncond.shape[0]:] |
|
denoised = torch.clone(denoised_uncond) |
|
|
|
for i, conds in enumerate(conds_list): |
|
for cond_index, weight in conds: |
|
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) |
|
|
|
return denoised |
|
|
|
def combine_denoised_for_edit_model(self, x_out, cond_scale): |
|
out_cond, out_img_cond, out_uncond = x_out.chunk(3) |
|
denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond) |
|
|
|
return denoised |
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): |
|
if state.interrupted or state.skipped: |
|
raise sd_samplers_common.InterruptedException |
|
|
|
|
|
|
|
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0 |
|
|
|
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) |
|
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) |
|
|
|
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" |
|
|
|
batch_size = len(conds_list) |
|
repeats = [len(conds_list[i]) for i in range(batch_size)] |
|
|
|
if shared.sd_model.model.conditioning_key == "crossattn-adm": |
|
image_uncond = torch.zeros_like(image_cond) |
|
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm} |
|
else: |
|
image_uncond = image_cond |
|
if isinstance(uncond, dict): |
|
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]} |
|
else: |
|
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]} |
|
|
|
if not is_edit_model: |
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) |
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) |
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond]) |
|
else: |
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) |
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) |
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)]) |
|
|
|
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond) |
|
cfg_denoiser_callback(denoiser_params) |
|
x_in = denoiser_params.x |
|
image_cond_in = denoiser_params.image_cond |
|
sigma_in = denoiser_params.sigma |
|
tensor = denoiser_params.text_cond |
|
uncond = denoiser_params.text_uncond |
|
skip_uncond = False |
|
|
|
|
|
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model: |
|
skip_uncond = True |
|
x_in = x_in[:-batch_size] |
|
sigma_in = sigma_in[:-batch_size] |
|
|
|
self.padded_cond_uncond = False |
|
if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: |
|
empty = shared.sd_model.cond_stage_model_empty_prompt |
|
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] |
|
|
|
if num_repeats < 0: |
|
tensor = pad_cond(tensor, -num_repeats, empty) |
|
self.padded_cond_uncond = True |
|
elif num_repeats > 0: |
|
uncond = pad_cond(uncond, num_repeats, empty) |
|
self.padded_cond_uncond = True |
|
|
|
if tensor.shape[1] == uncond.shape[1] or skip_uncond: |
|
if is_edit_model: |
|
cond_in = catenate_conds([tensor, uncond, uncond]) |
|
elif skip_uncond: |
|
cond_in = tensor |
|
else: |
|
cond_in = catenate_conds([tensor, uncond]) |
|
|
|
if shared.batch_cond_uncond: |
|
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in)) |
|
else: |
|
x_out = torch.zeros_like(x_in) |
|
for batch_offset in range(0, x_out.shape[0], batch_size): |
|
a = batch_offset |
|
b = a + batch_size |
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b])) |
|
else: |
|
x_out = torch.zeros_like(x_in) |
|
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size |
|
for batch_offset in range(0, tensor.shape[0], batch_size): |
|
a = batch_offset |
|
b = min(a + batch_size, tensor.shape[0]) |
|
|
|
if not is_edit_model: |
|
c_crossattn = subscript_cond(tensor, a, b) |
|
else: |
|
c_crossattn = torch.cat([tensor[a:b]], uncond) |
|
|
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) |
|
|
|
if not skip_uncond: |
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:])) |
|
|
|
denoised_image_indexes = [x[0][0] for x in conds_list] |
|
if skip_uncond: |
|
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) |
|
x_out = torch.cat([x_out, fake_uncond]) |
|
|
|
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model) |
|
cfg_denoised_callback(denoised_params) |
|
|
|
devices.test_for_nans(x_out, "unet") |
|
|
|
if opts.live_preview_content == "Prompt": |
|
sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes])) |
|
elif opts.live_preview_content == "Negative prompt": |
|
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) |
|
|
|
if is_edit_model: |
|
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) |
|
elif skip_uncond: |
|
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0) |
|
else: |
|
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) |
|
|
|
if self.mask is not None: |
|
denoised = self.init_latent * self.mask + self.nmask * denoised |
|
|
|
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps) |
|
cfg_after_cfg_callback(after_cfg_callback_params) |
|
denoised = after_cfg_callback_params.x |
|
|
|
self.step += 1 |
|
return denoised |
|
|
|
|
|
class TorchHijack: |
|
def __init__(self, sampler_noises): |
|
|
|
|
|
self.sampler_noises = deque(sampler_noises) |
|
|
|
def __getattr__(self, item): |
|
if item == 'randn_like': |
|
return self.randn_like |
|
|
|
if hasattr(torch, item): |
|
return getattr(torch, item) |
|
|
|
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'") |
|
|
|
def randn_like(self, x): |
|
if self.sampler_noises: |
|
noise = self.sampler_noises.popleft() |
|
if noise.shape == x.shape: |
|
return noise |
|
|
|
if opts.randn_source == "CPU" or x.device.type == 'mps': |
|
return torch.randn_like(x, device=devices.cpu).to(x.device) |
|
else: |
|
return torch.randn_like(x) |
|
|
|
|
|
class KDiffusionSampler: |
|
def __init__(self, funcname, sd_model): |
|
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser |
|
|
|
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) |
|
self.funcname = funcname |
|
self.func = getattr(k_diffusion.sampling, self.funcname) |
|
self.extra_params = sampler_extra_params.get(funcname, []) |
|
self.model_wrap_cfg = CFGDenoiser(self.model_wrap) |
|
self.sampler_noises = None |
|
self.stop_at = None |
|
self.eta = None |
|
self.config = None |
|
self.last_latent = None |
|
self.s_min_uncond = None |
|
|
|
self.conditioning_key = sd_model.model.conditioning_key |
|
|
|
def callback_state(self, d): |
|
step = d['i'] |
|
latent = d["denoised"] |
|
if opts.live_preview_content == "Combined": |
|
sd_samplers_common.store_latent(latent) |
|
self.last_latent = latent |
|
|
|
if self.stop_at is not None and step > self.stop_at: |
|
raise sd_samplers_common.InterruptedException |
|
|
|
state.sampling_step = step |
|
shared.total_tqdm.update() |
|
|
|
def launch_sampling(self, steps, func): |
|
state.sampling_steps = steps |
|
state.sampling_step = 0 |
|
|
|
try: |
|
return func() |
|
except RecursionError: |
|
print( |
|
'Encountered RecursionError during sampling, returning last latent. ' |
|
'rho >5 with a polyexponential scheduler may cause this error. ' |
|
'You should try to use a smaller rho value instead.' |
|
) |
|
return self.last_latent |
|
except sd_samplers_common.InterruptedException: |
|
return self.last_latent |
|
|
|
def number_of_needed_noises(self, p): |
|
return p.steps |
|
|
|
def initialize(self, p): |
|
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None |
|
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None |
|
self.model_wrap_cfg.step = 0 |
|
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None) |
|
self.eta = p.eta if p.eta is not None else opts.eta_ancestral |
|
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0) |
|
|
|
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) |
|
|
|
extra_params_kwargs = {} |
|
for param_name in self.extra_params: |
|
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: |
|
extra_params_kwargs[param_name] = getattr(p, param_name) |
|
|
|
if 'eta' in inspect.signature(self.func).parameters: |
|
if self.eta != 1.0: |
|
p.extra_generation_params["Eta"] = self.eta |
|
|
|
extra_params_kwargs['eta'] = self.eta |
|
|
|
return extra_params_kwargs |
|
|
|
def get_sigmas(self, p, steps): |
|
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) |
|
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: |
|
discard_next_to_last_sigma = True |
|
p.extra_generation_params["Discard penultimate sigma"] = True |
|
|
|
steps += 1 if discard_next_to_last_sigma else 0 |
|
|
|
if p.sampler_noise_scheduler_override: |
|
sigmas = p.sampler_noise_scheduler_override(steps) |
|
elif opts.k_sched_type != "Automatic": |
|
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) |
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max) |
|
sigmas_kwargs = { |
|
'sigma_min': sigma_min, |
|
'sigma_max': sigma_max, |
|
} |
|
|
|
sigmas_func = k_diffusion_scheduler[opts.k_sched_type] |
|
p.extra_generation_params["Schedule type"] = opts.k_sched_type |
|
|
|
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0: |
|
sigmas_kwargs['sigma_min'] = opts.sigma_min |
|
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min |
|
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0: |
|
sigmas_kwargs['sigma_max'] = opts.sigma_max |
|
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max |
|
|
|
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7. |
|
|
|
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho: |
|
sigmas_kwargs['rho'] = opts.rho |
|
p.extra_generation_params["Schedule rho"] = opts.rho |
|
|
|
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device) |
|
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': |
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) |
|
|
|
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) |
|
else: |
|
sigmas = self.model_wrap.get_sigmas(steps) |
|
|
|
if discard_next_to_last_sigma: |
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) |
|
|
|
return sigmas |
|
|
|
def create_noise_sampler(self, x, sigmas, p): |
|
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes""" |
|
if shared.opts.no_dpmpp_sde_batch_determinism: |
|
return None |
|
|
|
from k_diffusion.sampling import BrownianTreeNoiseSampler |
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() |
|
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size] |
|
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds) |
|
|
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): |
|
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) |
|
|
|
sigmas = self.get_sigmas(p, steps) |
|
|
|
sigma_sched = sigmas[steps - t_enc - 1:] |
|
xi = x + noise * sigma_sched[0] |
|
|
|
extra_params_kwargs = self.initialize(p) |
|
parameters = inspect.signature(self.func).parameters |
|
|
|
if 'sigma_min' in parameters: |
|
|
|
extra_params_kwargs['sigma_min'] = sigma_sched[-2] |
|
if 'sigma_max' in parameters: |
|
extra_params_kwargs['sigma_max'] = sigma_sched[0] |
|
if 'n' in parameters: |
|
extra_params_kwargs['n'] = len(sigma_sched) - 1 |
|
if 'sigma_sched' in parameters: |
|
extra_params_kwargs['sigma_sched'] = sigma_sched |
|
if 'sigmas' in parameters: |
|
extra_params_kwargs['sigmas'] = sigma_sched |
|
|
|
if self.config.options.get('brownian_noise', False): |
|
noise_sampler = self.create_noise_sampler(x, sigmas, p) |
|
extra_params_kwargs['noise_sampler'] = noise_sampler |
|
|
|
self.model_wrap_cfg.init_latent = x |
|
self.last_latent = x |
|
extra_args = { |
|
'cond': conditioning, |
|
'image_cond': image_conditioning, |
|
'uncond': unconditional_conditioning, |
|
'cond_scale': p.cfg_scale, |
|
's_min_uncond': self.s_min_uncond |
|
} |
|
|
|
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) |
|
|
|
if self.model_wrap_cfg.padded_cond_uncond: |
|
p.extra_generation_params["Pad conds"] = True |
|
|
|
return samples |
|
|
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): |
|
steps = steps or p.steps |
|
|
|
sigmas = self.get_sigmas(p, steps) |
|
|
|
x = x * sigmas[0] |
|
|
|
extra_params_kwargs = self.initialize(p) |
|
parameters = inspect.signature(self.func).parameters |
|
|
|
if 'sigma_min' in parameters: |
|
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() |
|
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() |
|
if 'n' in parameters: |
|
extra_params_kwargs['n'] = steps |
|
else: |
|
extra_params_kwargs['sigmas'] = sigmas |
|
|
|
if self.config.options.get('brownian_noise', False): |
|
noise_sampler = self.create_noise_sampler(x, sigmas, p) |
|
extra_params_kwargs['noise_sampler'] = noise_sampler |
|
|
|
self.last_latent = x |
|
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ |
|
'cond': conditioning, |
|
'image_cond': image_conditioning, |
|
'uncond': unconditional_conditioning, |
|
'cond_scale': p.cfg_scale, |
|
's_min_uncond': self.s_min_uncond |
|
}, disable=False, callback=self.callback_state, **extra_params_kwargs)) |
|
|
|
if self.model_wrap_cfg.padded_cond_uncond: |
|
p.extra_generation_params["Pad conds"] = True |
|
|
|
return samples |
|
|
|
|