File size: 22,091 Bytes
a825dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from collections import deque
import torch
import inspect
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common

from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback

samplers_k_diffusion = [
    ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
    ('Euler', 'sample_euler', ['k_euler'], {}),
    ('LMS', 'sample_lms', ['k_lms'], {}),
    ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
    ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
    ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
    ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
    ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
    ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
    ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
    ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
    ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
    ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
    ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
    ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
    ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
    ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
    ('DPM++ 2M Karras Sharp v1', 'sample_dpmpp_2m_v1', ['k_dpmpp_2m_ka_v1'], {'scheduler': 'karras'}),
    ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
    ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
]

samplers_data_k_diffusion = [
    sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
    for label, funcname, aliases, options in samplers_k_diffusion
    if hasattr(k_diffusion.sampling, funcname)
]

sampler_extra_params = {
    'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
    'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
    'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}

k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
k_diffusion_scheduler = {
    'Automatic': None,
    'karras': k_diffusion.sampling.get_sigmas_karras,
    'exponential': k_diffusion.sampling.get_sigmas_exponential,
    'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
}


def catenate_conds(conds):
    if not isinstance(conds[0], dict):
        return torch.cat(conds)

    return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}


def subscript_cond(cond, a, b):
    if not isinstance(cond, dict):
        return cond[a:b]

    return {key: vec[a:b] for key, vec in cond.items()}


def pad_cond(tensor, repeats, empty):
    if not isinstance(tensor, dict):
        return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)

    tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
    return tensor


class CFGDenoiser(torch.nn.Module):
    """
    Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
    that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
    instead of one. Originally, the second prompt is just an empty string, but we use non-empty
    negative prompt.
    """

    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.mask = None
        self.nmask = None
        self.init_latent = None
        self.step = 0
        self.image_cfg_scale = None
        self.padded_cond_uncond = False

    def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
        denoised_uncond = x_out[-uncond.shape[0]:]
        denoised = torch.clone(denoised_uncond)

        for i, conds in enumerate(conds_list):
            for cond_index, weight in conds:
                denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)

        return denoised

    def combine_denoised_for_edit_model(self, x_out, cond_scale):
        out_cond, out_img_cond, out_uncond = x_out.chunk(3)
        denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)

        return denoised

    def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
        if state.interrupted or state.skipped:
            raise sd_samplers_common.InterruptedException

        # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
        # so is_edit_model is set to False to support AND composition.
        is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0

        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
        uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)

        assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"

        batch_size = len(conds_list)
        repeats = [len(conds_list[i]) for i in range(batch_size)]

        if shared.sd_model.model.conditioning_key == "crossattn-adm":
            image_uncond = torch.zeros_like(image_cond)
            make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
        else:
            image_uncond = image_cond
            if isinstance(uncond, dict):
                make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
            else:
                make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}

        if not is_edit_model:
            x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
            sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
            image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
        else:
            x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
            sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
            image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])

        denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
        cfg_denoiser_callback(denoiser_params)
        x_in = denoiser_params.x
        image_cond_in = denoiser_params.image_cond
        sigma_in = denoiser_params.sigma
        tensor = denoiser_params.text_cond
        uncond = denoiser_params.text_uncond
        skip_uncond = False

        # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
        if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
            skip_uncond = True
            x_in = x_in[:-batch_size]
            sigma_in = sigma_in[:-batch_size]

        self.padded_cond_uncond = False
        if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
            empty = shared.sd_model.cond_stage_model_empty_prompt
            num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]

            if num_repeats < 0:
                tensor = pad_cond(tensor, -num_repeats, empty)
                self.padded_cond_uncond = True
            elif num_repeats > 0:
                uncond = pad_cond(uncond, num_repeats, empty)
                self.padded_cond_uncond = True

        if tensor.shape[1] == uncond.shape[1] or skip_uncond:
            if is_edit_model:
                cond_in = catenate_conds([tensor, uncond, uncond])
            elif skip_uncond:
                cond_in = tensor
            else:
                cond_in = catenate_conds([tensor, uncond])

            if shared.batch_cond_uncond:
                x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
            else:
                x_out = torch.zeros_like(x_in)
                for batch_offset in range(0, x_out.shape[0], batch_size):
                    a = batch_offset
                    b = a + batch_size
                    x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
        else:
            x_out = torch.zeros_like(x_in)
            batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
            for batch_offset in range(0, tensor.shape[0], batch_size):
                a = batch_offset
                b = min(a + batch_size, tensor.shape[0])

                if not is_edit_model:
                    c_crossattn = subscript_cond(tensor, a, b)
                else:
                    c_crossattn = torch.cat([tensor[a:b]], uncond)

                x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))

            if not skip_uncond:
                x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))

        denoised_image_indexes = [x[0][0] for x in conds_list]
        if skip_uncond:
            fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
            x_out = torch.cat([x_out, fake_uncond])  # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be

        denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
        cfg_denoised_callback(denoised_params)

        devices.test_for_nans(x_out, "unet")

        if opts.live_preview_content == "Prompt":
            sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
        elif opts.live_preview_content == "Negative prompt":
            sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])

        if is_edit_model:
            denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
        elif skip_uncond:
            denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
        else:
            denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)

        if self.mask is not None:
            denoised = self.init_latent * self.mask + self.nmask * denoised

        after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
        cfg_after_cfg_callback(after_cfg_callback_params)
        denoised = after_cfg_callback_params.x

        self.step += 1
        return denoised


class TorchHijack:
    def __init__(self, sampler_noises):
        # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
        # implementation.
        self.sampler_noises = deque(sampler_noises)

    def __getattr__(self, item):
        if item == 'randn_like':
            return self.randn_like

        if hasattr(torch, item):
            return getattr(torch, item)

        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")

    def randn_like(self, x):
        if self.sampler_noises:
            noise = self.sampler_noises.popleft()
            if noise.shape == x.shape:
                return noise

        if opts.randn_source == "CPU" or x.device.type == 'mps':
            return torch.randn_like(x, device=devices.cpu).to(x.device)
        else:
            return torch.randn_like(x)


class KDiffusionSampler:
    def __init__(self, funcname, sd_model):
        denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser

        self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
        self.funcname = funcname
        self.func = getattr(k_diffusion.sampling, self.funcname)
        self.extra_params = sampler_extra_params.get(funcname, [])
        self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
        self.sampler_noises = None
        self.stop_at = None
        self.eta = None
        self.config = None  # set by the function calling the constructor
        self.last_latent = None
        self.s_min_uncond = None

        self.conditioning_key = sd_model.model.conditioning_key

    def callback_state(self, d):
        step = d['i']
        latent = d["denoised"]
        if opts.live_preview_content == "Combined":
            sd_samplers_common.store_latent(latent)
        self.last_latent = latent

        if self.stop_at is not None and step > self.stop_at:
            raise sd_samplers_common.InterruptedException

        state.sampling_step = step
        shared.total_tqdm.update()

    def launch_sampling(self, steps, func):
        state.sampling_steps = steps
        state.sampling_step = 0

        try:
            return func()
        except RecursionError:
            print(
                'Encountered RecursionError during sampling, returning last latent. '
                'rho >5 with a polyexponential scheduler may cause this error. '
                'You should try to use a smaller rho value instead.'
            )
            return self.last_latent
        except sd_samplers_common.InterruptedException:
            return self.last_latent

    def number_of_needed_noises(self, p):
        return p.steps

    def initialize(self, p):
        self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
        self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
        self.model_wrap_cfg.step = 0
        self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
        self.eta = p.eta if p.eta is not None else opts.eta_ancestral
        self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)

        k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])

        extra_params_kwargs = {}
        for param_name in self.extra_params:
            if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
                extra_params_kwargs[param_name] = getattr(p, param_name)

        if 'eta' in inspect.signature(self.func).parameters:
            if self.eta != 1.0:
                p.extra_generation_params["Eta"] = self.eta

            extra_params_kwargs['eta'] = self.eta

        return extra_params_kwargs

    def get_sigmas(self, p, steps):
        discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
        if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
            discard_next_to_last_sigma = True
            p.extra_generation_params["Discard penultimate sigma"] = True

        steps += 1 if discard_next_to_last_sigma else 0

        if p.sampler_noise_scheduler_override:
            sigmas = p.sampler_noise_scheduler_override(steps)
        elif opts.k_sched_type != "Automatic":
            m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
            sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
            sigmas_kwargs = {
                'sigma_min': sigma_min,
                'sigma_max': sigma_max,
            }

            sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
            p.extra_generation_params["Schedule type"] = opts.k_sched_type

            if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
                sigmas_kwargs['sigma_min'] = opts.sigma_min
                p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
            if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
                sigmas_kwargs['sigma_max'] = opts.sigma_max
                p.extra_generation_params["Schedule max sigma"] = opts.sigma_max

            default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.

            if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
                sigmas_kwargs['rho'] = opts.rho
                p.extra_generation_params["Schedule rho"] = opts.rho

            sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
        elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
            sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())

            sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
        else:
            sigmas = self.model_wrap.get_sigmas(steps)

        if discard_next_to_last_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])

        return sigmas

    def create_noise_sampler(self, x, sigmas, p):
        """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
        if shared.opts.no_dpmpp_sde_batch_determinism:
            return None

        from k_diffusion.sampling import BrownianTreeNoiseSampler
        sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
        current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
        return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)

    def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
        steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)

        sigmas = self.get_sigmas(p, steps)

        sigma_sched = sigmas[steps - t_enc - 1:]
        xi = x + noise * sigma_sched[0]

        extra_params_kwargs = self.initialize(p)
        parameters = inspect.signature(self.func).parameters

        if 'sigma_min' in parameters:
            ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
            extra_params_kwargs['sigma_min'] = sigma_sched[-2]
        if 'sigma_max' in parameters:
            extra_params_kwargs['sigma_max'] = sigma_sched[0]
        if 'n' in parameters:
            extra_params_kwargs['n'] = len(sigma_sched) - 1
        if 'sigma_sched' in parameters:
            extra_params_kwargs['sigma_sched'] = sigma_sched
        if 'sigmas' in parameters:
            extra_params_kwargs['sigmas'] = sigma_sched

        if self.config.options.get('brownian_noise', False):
            noise_sampler = self.create_noise_sampler(x, sigmas, p)
            extra_params_kwargs['noise_sampler'] = noise_sampler

        self.model_wrap_cfg.init_latent = x
        self.last_latent = x
        extra_args = {
            'cond': conditioning,
            'image_cond': image_conditioning,
            'uncond': unconditional_conditioning,
            'cond_scale': p.cfg_scale,
            's_min_uncond': self.s_min_uncond
        }

        samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))

        if self.model_wrap_cfg.padded_cond_uncond:
            p.extra_generation_params["Pad conds"] = True

        return samples

    def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
        steps = steps or p.steps

        sigmas = self.get_sigmas(p, steps)

        x = x * sigmas[0]

        extra_params_kwargs = self.initialize(p)
        parameters = inspect.signature(self.func).parameters

        if 'sigma_min' in parameters:
            extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
            extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
            if 'n' in parameters:
                extra_params_kwargs['n'] = steps
        else:
            extra_params_kwargs['sigmas'] = sigmas

        if self.config.options.get('brownian_noise', False):
            noise_sampler = self.create_noise_sampler(x, sigmas, p)
            extra_params_kwargs['noise_sampler'] = noise_sampler

        self.last_latent = x
        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
            'cond': conditioning,
            'image_cond': image_conditioning,
            'uncond': unconditional_conditioning,
            'cond_scale': p.cfg_scale,
            's_min_uncond': self.s_min_uncond
        }, disable=False, callback=self.callback_state, **extra_params_kwargs))

        if self.model_wrap_cfg.padded_cond_uncond:
            p.extra_generation_params["Pad conds"] = True

        return samples