File size: 90,441 Bytes
a4fb14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
# coding=utf-8
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Implementation from: https://github.com/huggingface/transformers/pull/32027

"""PyTorch MAMBA2 model."""

import math
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.utils.import_utils import (
    get_torch_version,
    is_causal_conv1d_available,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
)
from .configuration_mamba2attn import Mamba2Config


logger = logging.get_logger(__name__)

if is_flash_attn_2_available():
    from transformers.modeling_flash_attention_utils import _flash_attention_forward

try:
    from mamba_ssm.ops.triton.selective_state_update import selective_state_update
    from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
except:
    selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None

try:
    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except:
    causal_conv1d_update, causal_conv1d_fn = None, None

is_fast_path_available = all(
    (
        selective_state_update,
        mamba_chunk_scan_combined,
        mamba_split_conv1d_scan_combined,
        causal_conv1d_fn,
        causal_conv1d_update,
    )
)


_CONFIG_FOR_DOC = "MambaConfig"


# Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache with Mamba->Mamba2
class HybridMamba2AttentionDynamicCache(DynamicCache):
    """
    A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba2 cache
    (which has a constant shape regardless of seq_len).

    This cache has two sets of lists of tensors: `key_cache`, `value_cache`, and 'conv_states' for attention cache and
    `conv_states` and `ssm_states` for mamba2 cache. Each of these lists has `num_layers` tensors.

    For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_key_value_heads, seq_len, attention_head_dim)`,
    while `conv_states` has a shape of `(batch_size, attention_head_dim * (num_attention_heads + 2 * num_key_value_heads), attention_conv_kernel)`
    or `(batch_size, 0)` (empty tensors) and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).

    For mamba2 layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
    while `conv_states` represents the convolution state and has a shape of `(batch_size, intermediate_size + 2 * state_size, mamba2_conv_kernel)`,
    and `ssm_states` represents the ssm state and has a shape of `(batch_size, mamba2_num_heads, mamba2_head_dim, state_size)`.
    """

    def __init__(self, config, batch_size, dtype=torch.float16, device=None):
        self.dtype = dtype
        self.has_previous_state = False

        in_channels = config.intermediate_size + 2 * config.state_size
        ssm_state_size = config.state_size
        mamba2_conv_kernel_size = config.mamba2_conv_kernel
        attention_conv_kernel_size = config.attention_conv_kernel
        mamba2_num_heads = config.mamba2_num_heads
        mamba2_head_dim = config.mamba2_head_dim
        attention_head_dim = config.attention_head_dim
        attention_num_heads = config.num_attention_heads
        attention_num_heads_kv = config.num_key_value_heads
        attention_qkv_dim = attention_head_dim * (attention_num_heads + 2 * attention_num_heads_kv)

        self.conv_states = []
        self.ssm_states = []
        self.transformer_layers = []
        for i in range(config.num_hidden_layers):
            if i not in config.attention_layers_idx:
                self.conv_states += [
                    torch.zeros(batch_size, in_channels, mamba2_conv_kernel_size, device=device, dtype=dtype)
                ]
                self.ssm_states += [
                    torch.zeros(
                        batch_size, mamba2_num_heads, mamba2_head_dim, ssm_state_size, device=device, dtype=dtype
                    )
                ]
            else:
                # Conv1d is optional for the attention layer
                if attention_conv_kernel_size > 0:
                    self.conv_states += [
                        torch.zeros(
                            batch_size, attention_qkv_dim, attention_conv_kernel_size, device=device, dtype=dtype
                        )
                    ]
                else:
                    self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
                self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
                self.transformer_layers.append(i)

        self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
        self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]

    # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.update
    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Update the cache
        if self.key_cache[layer_idx].shape[-1] == 0:
            self.key_cache[layer_idx] = key_states
            self.value_cache[layer_idx] = value_states
        else:
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.reorder_cache
    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.key_cache)):
            device = self.key_cache[layer_idx].device
            self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
            device = self.value_cache[layer_idx].device
            self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))

            device = self.conv_states[layer_idx].device
            self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
            device = self.ssm_states[layer_idx].device
            self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))

    # Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.get_seq_length
    # Fixes issues when accessing on empty cache and allow mamba2 pure architectures
    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # Mamba2 layers don't need the seq_len either way
        if len(self.transformer_layers) == 0:
            return 0

        # Take any layer that contains cache and not empty tensor
        layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
        if len(self.key_cache) <= layer_idx:
            return 0

        # We also allow seq_len checks on empty tensors
        size_idx = -2 if len(self.key_cache[layer_idx].shape) > 2 else -1

        return self.key_cache[layer_idx].shape[size_idx]

    # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.to_legacy_cache with Mamba->Mamba2
    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
        raise NotImplementedError("HybridMamba2AttentionDynamicCache does not have a legacy cache equivalent.")

    @classmethod
    # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.from_legacy_cache with Mamba->Mamba2
    def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
        raise NotImplementedError("HybridMamba2AttentionDynamicCache does not have a legacy cache equivalent.")


class Mamba2MLP(nn.Module):
    def __init__(self, config: Mamba2Config, layer_idx):
        super().__init__()
        self.layer_idx = layer_idx

        self.hidden_size = config.hidden_size
        self.original_intermediate_size = config.mlp_intermediate_size
        self.mlp_padding_size = config.mlp_padding_size

        self.intermediate_size = (
            (self.original_intermediate_size + self.mlp_padding_size - 1)
            // self.mlp_padding_size
            * self.mlp_padding_size
        )

        self.fc1 = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.use_mlp_bias)
        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]
        self.fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_mlp_bias)

    def forward(self, x):
        y = self.fc1(x)
        y, z = y.chunk(2, dim=-1)
        y = y * self.act(z)
        y = self.fc2(y)
        return y


# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mamba2
class Mamba2RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        super().__init__()
        self.scaling_factor = scaling_factor
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        # For BC we register cos and sin cached
        self.max_seq_len_cached = max_position_embeddings

    @torch.no_grad()
    def forward(self, x, position_ids):
        # x: [bs, num_attention_heads, seq_len, head_size]
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 since bfloat16 loses precision on long contexts
        # See https://github.com/huggingface/transformers/pull/29285
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Mamba2
class Mamba2LinearScalingRotaryEmbedding(Mamba2RotaryEmbedding):
    """Mamba2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def forward(self, x, position_ids):
        # difference to the original RoPE: a scaling factor is aplied to the position ids
        position_ids = position_ids.float() / self.scaling_factor
        cos, sin = super().forward(x, position_ids)
        return cos, sin


# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Mamba2
class Mamba2DynamicNTKScalingRotaryEmbedding(Mamba2RotaryEmbedding):
    """Mamba2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def forward(self, x, position_ids):
        # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (
                base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
            )
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: this may break with compilation

        cos, sin = super().forward(x, position_ids)
        return cos, sin


# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


# Adapted from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Mamba2
class Mamba2Attention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Possible switch to MQA when num_heads_kv < num_heads_q.
    """

    def __init__(self, config: Mamba2Config, layer_idx: int):
        super().__init__()
        self.config = config

        self.hidden_size = config.hidden_size
        self.conv_kernel_size = config.attention_conv_kernel
        self.head_dim = config.attention_head_dim
        self.num_heads = config.num_attention_heads
        self.num_heads_kv = config.num_key_value_heads
        self.num_groups_kv = self.num_heads // self.num_heads_kv
        # See https://github.com/state-spaces/mamba/issues/457#issuecomment-2221116217
        # hidden_size % num_heads == 0 is not necessary due to this custom head projection dim
        self.qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
        self.out_dim = self.head_dim * self.num_heads

        # Optional RoPE
        self.rotary_emb_dim = config.rope_emb_dim
        self.rope_theta = config.rope_theta
        self._init_rope()

        self.in_proj = nn.Linear(self.hidden_size, self.qkv_dim, bias=config.use_attention_qkv_bias)
        # Optional conv1d
        self._init_conv1d()
        self.out_proj = nn.Linear(self.out_dim, self.hidden_size, bias=config.use_attention_out_bias)

        self.is_causal = True
        self.layer_idx = layer_idx

        # We throw a similar fast path warning, in case no mamba2 block is used
        if config.num_hidden_layers == len(config.attention_layers_idx):
            if not is_causal_conv1d_available():
                logger.warning_once(
                    "Convolution implementation in Mamba2 attention is falling back to naive implementation because `(causal_conv1d_fn, causal_conv1d_update)`"
                    "is None. To install follow https://github.com/Dao-AILab/causal-conv1d."
                )

    # Adapted from transformers.models.llama.modeling_llama.LlamaAttention._init_rope
    # Rope is optional and can be ignored if rope_emb_dim <= 0
    def _init_rope(self):
        # RoPE is optional
        if self.rotary_emb_dim < 1:
            return

        if self.config.rope_scaling is None:
            self.rotary_emb = Mamba2RotaryEmbedding(
                self.rotary_emb_dim,
                max_position_embeddings=self.config.max_position_embeddings,
                base=self.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = Mamba2LinearScalingRotaryEmbedding(
                    self.rotary_emb_dim,
                    max_position_embeddings=self.config.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = Mamba2DynamicNTKScalingRotaryEmbedding(
                    self.rotary_emb_dim,
                    max_position_embeddings=self.config.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def _init_conv1d(self):
        # Conv1d is optional
        if self.conv_kernel_size < 1:
            return

        self.conv1d = nn.Conv1d(
            self.qkv_dim,
            self.qkv_dim,
            kernel_size=self.conv_kernel_size,
            padding=self.conv_kernel_size - 1,
            groups=self.qkv_dim,
        )

    # Adapted from transformers.models.llama.modeling_llama.LlamaAttention.forward
    # Custom projections involving optional causal-conv-1d and optional (partial) RoPE
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        position_ids: torch.LongTensor,
        cache: Optional[HybridMamba2AttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ):
        bsz, q_len, _ = hidden_states.shape

        # Apply attention-conv1d-specific projections and rope
        query, key, value = self._attn_conv1d_projections_and_rope(
            hidden_states=hidden_states, position_ids=position_ids, cache=cache, use_cache=use_cache
        )

        # Repeat k/v heads if n_kv_heads < n_heads
        key = repeat_kv(key, self.num_groups_kv)
        value = repeat_kv(value, self.num_groups_kv)

        attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key.shape[-2]]
            attn_weights = attn_weights + causal_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=0.0, training=self.training)
        attn_output = torch.matmul(attn_weights, value)

        # Reshape output
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, -1)

        # Final projection
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights

    def _conv1d(self, qkv, seq_len, cache, cached_start, cached_forward):
        # Init cache with first "real" values
        if cached_start:
            qkv_t = qkv.transpose(1, 2)
            cache.conv_states[self.layer_idx].copy_(
                nn.functional.pad(qkv_t, (self.conv_kernel_size - qkv_t.shape[-1], 0))
            )

        if is_causal_conv1d_available():
            if cached_forward:
                qkv = causal_conv1d_update(
                    x=qkv.squeeze(1),
                    conv_state=cache.conv_states[self.layer_idx],
                    weight=self.conv1d.weight.squeeze(1),
                    bias=self.conv1d.bias,
                ).unsqueeze(1)
            else:
                qkv = causal_conv1d_fn(
                    x=qkv.transpose(1, 2),
                    weight=self.conv1d.weight.squeeze(1),
                    bias=self.conv1d.bias,
                ).transpose(1, 2)
        else:
            if cached_forward:
                cache.conv_states[self.layer_idx].copy_(
                    torch.roll(cache.conv_states[self.layer_idx], shifts=-1, dims=-1)
                )
                cache.conv_states[self.layer_idx][:, :, -1] = qkv.squeeze(1)
                qkv = torch.sum(cache.conv_states[self.layer_idx] * self.conv1d.weight.squeeze(1), dim=-1)
                if self.conv1d.bias is not None:
                    qkv = qkv + self.conv1d.bias
                qkv = qkv.unsqueeze(1)
            else:
                qkv = self.conv1d(qkv.transpose(1, 2))[..., :seq_len].transpose(1, 2).contiguous()

        return qkv

    # Moved to a separate function since it's optional
    # Mixture of transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXAttention._attn_projections_and_rope and
    # transformers.models.llama.modeling_llama.LlamaAttention.forward RoPE parts
    # GPTNeoX for the partial (on dim) RoPE application, Llama for the general RoPE embeddings
    def _apply_rope(
        self,
        query: torch.FloatTensor,
        key: torch.FloatTensor,
        value: torch.FloatTensor,
        position_ids: torch.LongTensor,
    ):
        # Compute rotary embeddings on rotary_emb_dim
        query_rot = query[..., : self.rotary_emb_dim]
        query_pass = query[..., self.rotary_emb_dim :]
        key_rot = key[..., : self.rotary_emb_dim]
        key_pass = key[..., self.rotary_emb_dim :]

        # Compute RoPE and stitch it back together
        cos, sin = self.rotary_emb(value, position_ids)
        query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
        query = torch.cat((query, query_pass), dim=-1)
        key = torch.cat((key, key_pass), dim=-1)

        return query, key

    def _attn_conv1d_projections_and_rope(
        self,
        hidden_states: torch.FloatTensor,
        position_ids: torch.LongTensor,
        cache: Optional[HybridMamba2AttentionDynamicCache] = None,
        use_cache: Optional[bool] = False,
    ):
        bsz, q_len, _ = hidden_states.shape

        # Managing cache state
        has_layer_past = cache is not None
        if has_layer_past:
            cached_start = not cache.has_previous_state
            cached_forward = not cached_start
        else:
            cached_start = False
            cached_forward = False

        # Compute QKV
        # Attention heads [batch, seq_len, hidden_size]
        #   --> [batch, seq_len, (head_dim * (num_heads(_q) + 2 * num_heads_kv)]
        qkv = self.in_proj(hidden_states)

        # (Optional) Apply Conv1d, caching is applied in-place
        if self.conv_kernel_size > 0:
            qkv = self._conv1d(
                qkv, seq_len=qkv.shape[1], cache=cache, cached_start=cached_start, cached_forward=cached_forward
            )

        # Get the respective matrices from the parallel projection back
        q, k, v = qkv.split(
            [self.num_heads * self.head_dim, self.num_heads_kv * self.head_dim, self.num_heads_kv * self.head_dim],
            dim=-1,
        )

        # Split combined hidden dims back into respective attention heads
        # [batch, seq_len, hidden_size] --> [batch, seq_len, num_heads, head_dim]
        query = q.reshape(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key = k.reshape(bsz, q_len, self.num_heads_kv, self.head_dim).transpose(1, 2)
        value = v.reshape(bsz, q_len, self.num_heads_kv, self.head_dim).transpose(1, 2)

        # (Optional) RoPE
        if self.rotary_emb_dim > 0:
            # TODO do we need to cache sin and cos for RoPE, llama doesn't seem to cache it (except when using sink cache)?
            query, key = self._apply_rope(query, key, value, position_ids)

        # Cache KV values
        if has_layer_past:
            key, value = cache.update(key, value, self.layer_idx)

        return query, key, value


# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Mamba2
class Mamba2FlashAttention2(Mamba2Attention):
    """
    Mamba2 flash attention module. This module inherits from `Mamba2Attention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
    # Custom projections involving optional causal-conv-1d and optional (partial) RoPE
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        position_ids: torch.LongTensor,
        cache: Optional[HybridMamba2AttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ):
        bsz, q_len, _ = hidden_states.shape

        # Apply attention-conv1d-specific projections and rope
        query, key, value = self._attn_conv1d_projections_and_rope(
            hidden_states=hidden_states, position_ids=position_ids, cache=cache, use_cache=use_cache
        )

        # Repeat k/v heads if n_kv_heads < n_heads
        key = repeat_kv(key, self.num_groups_kv)
        value = repeat_kv(value, self.num_groups_kv)

        # Permute to get the expected shape for Flash Attention
        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 / bfloat16 just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        input_dtype = query.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.in_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query = query.to(target_dtype)
            key = key.to(target_dtype)
            value = value.to(target_dtype)

        # Compute attention
        attn_weights = _flash_attention_forward(
            query,
            key,
            value,
            attention_mask,
            q_len,
            dropout=0.0,
            softmax_scale=None,
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
            is_causal=self.is_causal,
        )

        # Reshape outputs
        attn_output = attn_weights.reshape(bsz, q_len, -1).contiguous()
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights


# Adapted from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mamba2
class Mamba2SdpaAttention(Mamba2Attention):
    """
    Mamba2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `Mamba2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
    to adapt to the SDPA API.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
        # attn_mask, so we need to call `.contiguous()`. This was fixed in torch==2.2.0.
        # Reference: https://github.com/pytorch/pytorch/issues/112577
        self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0")

    # Adapted from transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
    # Custom projections involving optional causal-conv-1d and optional (partial) RoPE
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        position_ids: torch.LongTensor,
        cache: Optional[HybridMamba2AttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ):
        if output_attentions:
            logger.warning_once(
                "`Mamba2SdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
                "`output_attentions=True`. Falling back to the manual attention implementation, but specifying the manual "
                "implementation will be required from Transformers version v5.0.0 onwards. "
                'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                output_attentions=output_attentions,
                cache=cache,
                use_cache=use_cache,
            )

        bsz, q_len, _ = hidden_states.size()

        # Apply attention-conv1d-specific projections and rope
        query, key, value = self._attn_conv1d_projections_and_rope(
            hidden_states=hidden_states, position_ids=position_ids, cache=cache, use_cache=use_cache
        )

        # Repeat k/v heads if n_kv_heads < n_heads
        key = repeat_kv(key, self.num_groups_kv)
        value = repeat_kv(value, self.num_groups_kv)

        causal_mask = attention_mask
        if attention_mask is not None:
            causal_mask = causal_mask[:, :, :, : key.shape[-2]]

        # Avoid torch==2.1.2 specific bug for the memory-efficient backend in SDPA
        if self.require_contiguous_qkv and query.device.type == "cuda" and attention_mask is not None:
            query = query.contiguous()
            key = key.contiguous()
            value = value.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        is_causal = True if attention_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=causal_mask,
            dropout_p=0.0,
            is_causal=is_causal,
        )

        # Reshape outputs
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)

        attn_output = self.out_proj(attn_output)

        return attn_output, None


MAMBA2_ATTENTION_CLASSES = {
    "eager": Mamba2Attention,
    "flash_attention_2": Mamba2FlashAttention2,
    "sdpa": Mamba2SdpaAttention,
}


class Mamba2Mixer(nn.Module):
    """
    Using the found relation to the attention mechanism under certain conditions (State-Space-Duality SSD),
    we use the Multi-input SSM which can be seen as a counterpart to the Multi-value Attention with analogues:
    - X ~= V
    - B ~= Q
    - C ~= K
    - A (1-SS(a)) ~= Attention Mask

    For an overview, see the mamba2 paper, section 6, figure 4.
    """

    def __init__(self, config: Mamba2Config, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.ssm_state_size = config.state_size
        self.conv_kernel_size = config.mamba2_conv_kernel
        self.intermediate_size = config.intermediate_size
        self.head_dim = config.mamba2_head_dim
        self.num_heads = config.mamba2_num_heads
        self.chunk_size = config.chunk_size
        self.dt_min = config.time_step_limit[0]
        self.dt_max = config.time_step_limit[1]
        self.layer_idx = layer_idx
        self.use_bias = config.use_mamba2_bias
        self.use_conv_bias = config.use_conv_bias

        # Parallel projection of the input hidden states
        self.in_proj = nn.Linear(
            in_features=self.hidden_size,
            out_features=2 * (self.intermediate_size + self.ssm_state_size) + self.num_heads,
            bias=self.use_bias,
        )

        conv1d_dim = self.intermediate_size + 2 * self.ssm_state_size
        self.conv1d = nn.Conv1d(
            in_channels=conv1d_dim,
            out_channels=conv1d_dim,
            bias=config.use_conv_bias,
            kernel_size=config.mamba2_conv_kernel,
            groups=conv1d_dim,
            padding=config.mamba2_conv_kernel - 1,
        )

        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]

        # We only use a bias as parameter
        self.dt_bias = nn.Parameter(torch.rand(size=(self.num_heads,)))

        # Scalar initialization of A, i.e. 1-Semi-Separable Matrix of A (== 1-SS(a))
        A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(*config.A_initializer_range)
        self.A_log = nn.Parameter(torch.log(A))

        # As D is a skip connection with A, it is also a scalar of the same shape as A
        self.D = nn.Parameter(torch.ones(self.num_heads))

        # Residual normalization introduced for instability, see section 7 of the paper
        self.norm = Mamba2RMSNorm(self.intermediate_size, eps=1e-5)

        self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)

        if not is_fast_path_available:
            logger.warning_once(
                "The fast path is not available because on of "
                "`(selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, causal_conv1d_fn, causal_conv1d_update)`"
                " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
                " https://github.com/Dao-AILab/causal-conv1d"
            )

    def triton_kernels_forward(self, hidden_states, cache):
        # Managing cache state
        if cache is not None:
            cached_start = not cache.has_previous_state
            cached_forward = not cached_start
        else:
            cached_start = False
            cached_forward = False

        # 1. Parallel projection for the input
        zxbcdt = self.in_proj(hidden_states)

        # 2-5. Training combined into one triton kernel
        if self.training and cache is None:
            y = mamba_split_conv1d_scan_combined(
                zxbcdt=zxbcdt,
                conv1d_weight=self.conv1d.weight.squeeze(1),
                conv1d_bias=self.conv1d.bias,
                dt_bias=self.dt_bias,
                A=-torch.exp(self.A_log),
                D=self.D,
                chunk_size=self.chunk_size,
                seq_idx=None,
                activation=self.activation,
                rmsnorm_weight=self.norm.weight,
                rmsnorm_eps=self.norm.eps,
                outproj_weight=self.out_proj.weight,
                outproj_bias=self.out_proj.bias,
                headdim=self.head_dim,
                ngroups=1,
                norm_before_gate=False,
                dt_limit=(self.dt_min, self.dt_max),
                initial_states=None,
                return_final_states=False,
            )
            return y

        # Reconstructing the necessary vars
        d_mlp = (zxbcdt.shape[-1] - 2 * self.intermediate_size - 2 * self.ssm_state_size - self.num_heads) // 2
        z0, x0, z, xBC, dt = torch.split(
            zxbcdt,
            [d_mlp, d_mlp, self.intermediate_size, self.intermediate_size + 2 * self.ssm_state_size, self.num_heads],
            dim=-1,
        )

        # 2. Causal convolution for partial set of variables ("input" (x), B, C)
        # Init cache with first "real" values
        if cached_start:
            xBC_t = xBC.transpose(1, 2)
            cache.conv_states[self.layer_idx].copy_(F.pad(xBC_t, (self.conv_kernel_size - xBC_t.shape[-1], 0)))

        if cached_forward:
            xBC = causal_conv1d_update(
                x=xBC.squeeze(1),
                conv_state=cache.conv_states[self.layer_idx],
                weight=self.conv1d.weight.squeeze(1),
                bias=self.conv1d.bias,
                activation=self.activation,
            )
        else:
            xBC = causal_conv1d_fn(
                x=xBC.transpose(1, 2),
                weight=self.conv1d.weight.squeeze(1),
                bias=self.conv1d.bias,
                activation=self.activation,
            ).transpose(1, 2)

        # Reconstruct causal convolution vars
        x, B, C = torch.split(xBC, [self.intermediate_size, self.ssm_state_size, self.ssm_state_size], dim=-1)

        # 3. State Space Duality (SSD)
        # Discretize 1-SS(a)
        A = -torch.exp(self.A_log.float())  # .float() to avoid infs/nans

        if not cached_forward:
            y = mamba_chunk_scan_combined(
                x=x.reshape(x.shape[0], x.shape[1], -1, self.head_dim),
                dt=dt,
                A=A,
                B=B.unsqueeze(-2),
                C=C.unsqueeze(-2),
                chunk_size=self.chunk_size,
                D=self.D,
                z=None,
                initial_states=None,
                dt_bias=self.dt_bias,
                dt_softplus=True,
                seq_idx=None,
                dt_limit=(self.dt_min, self.dt_max),
                return_final_states=cached_start,
            )

            if cached_start:
                y, last_state = y
                if cached_start:
                    cache.ssm_states[self.layer_idx].copy_(last_state)

            # [bsz, seq_len, num_heads, head_dim] -> [bsz, seq_len, intermediate size]
            y = y.reshape(y.shape[0], y.shape[1], -1)
        else:
            # Preparing values for single step
            # [num_heads] -> [num_heads, head_dim, state_size]
            A = (
                A.unsqueeze(-1)
                .unsqueeze(-1)
                .expand(A.shape[0], self.head_dim, self.ssm_state_size)
                .to(dtype=torch.float32)
            )
            # [bsz, 1, num_heads] -> [bsz, num_heads, head_dim]
            dt = dt.transpose(1, 2).expand(dt.shape[0], dt.shape[-1], self.head_dim)
            # [num_heads] -> [num_heads, head_dim]
            dt_bias = self.dt_bias.unsqueeze(-1).expand(self.dt_bias.shape[0], self.head_dim)
            # [num_heads] -> [num_heads, head_dim]
            D = self.D.unsqueeze(-1).expand(self.D.shape[0], self.head_dim)
            # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
            x_reshaped = x.reshape(x.shape[0], -1, self.head_dim)

            # Triton kernel for updating states in-place and returning the hidden state
            y = selective_state_update(
                state=cache.ssm_states[self.layer_idx],
                x=x_reshaped,
                dt=dt,
                A=A,
                B=B,
                C=C,
                D=D,
                z=None,
                dt_bias=dt_bias,
                dt_softplus=True,
            )

            # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
            y = y.reshape(y.shape[0], -1).unsqueeze(1)

        # 4. Gate normalization introduced for instability, see section 7 of the paper
        y = self.norm(y, residual=z)
        if d_mlp > 0:
            y = torch.cat([self.act(z0) * x0, y], dim=-1)

        # 5. Out projecting
        y = self.out_proj(y)

        return y

    @classmethod
    def _ssd_naive(
        cls, x, dt, A, B, C, D, chunk_size, dt_bias, dt_min, dt_max, initial_states=None, return_final_states=False
    ):
        """
        Arguments:
            x:       (batch_size, seq_len, num_heads, head_dim)
            dt:      (batch_size, seq_len, num_heads)
            A:       (num_heads)
            B:       (batch_size, seq_len, num_heads, ssm_state_size)
            C:       (batch_size, seq_len, num_heads, ssm_state_size)
            D:       (num_heads)
            dt_bias: (num_heads)
        Return:
            y:       (batch_size, seq_len, num_heads, head_dim)
        """

        def pad_by_size(x, pad_size):
            """
            Padding x tensor with `pad_size` on the seq_len dim (dim=1)

            Assumes that we only have tensors of either size 4 or 3
            """
            assert 2 < len(x.shape) < 5

            pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(x.shape) == 4 else (0, 0, 0, pad_size, 0, 0)

            return F.pad(x, pad_shape, mode="constant", value=0)

        def reshape_into_chunks(x, pad_size, chunk_size):
            """
            Padding x tensor with `pad_size` on the seq_len dim (dim=1) and
            simultaneously splitting it into chunk sequences.

            Assumes that we only have tensors of either size 4 or 3
            """
            # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
            x = pad_by_size(x, pad_size)

            if len(x.shape) == 3:
                # b (l c) h -> b l c h with c=chunk_size
                # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
                return x.reshape(x.shape[0], -1, chunk_size, x.shape[2])
            else:
                # b (l c) h p -> b l c h p with c=chunk_size
                # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
                return x.reshape(x.shape[0], -1, chunk_size, x.shape[2], x.shape[3])

        def segsum(x):
            """
            More stable segment sum calculation
            """
            T = x.size(-1)
            # [..., chunk_size] -> [..., chunk_size, chunk_size]
            x = x.unsqueeze(-1).expand(*x.size(), T)
            mask = torch.tril(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=-1)
            x = x.masked_fill(~mask, 0)
            x_segsum = torch.cumsum(x, dim=-2)
            mask = torch.tril(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=0)
            x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
            return x_segsum

        # Since it is parallelized by chunks they have to be of the same size which we ensure by padding
        seq_len = x.shape[1]
        pad_size = chunk_size - (seq_len % chunk_size)

        # dt softplus and clamping
        dt = F.softplus(dt + dt_bias)
        dt = torch.clamp(dt, dt_min, dt_max)

        D_residual = D.unsqueeze(-1) * pad_by_size(x, pad_size)

        # Discretize x and A
        x = x * dt.unsqueeze(-1)
        A = A.to(x.dtype) * dt

        # Rearrange into blocks/chunks
        x, A, B, C = [reshape_into_chunks(t, pad_size, chunk_size) for t in (x, A, B, C)]

        # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
        A = A.permute(0, 3, 1, 2)
        A_cumsum = torch.cumsum(A, dim=-1)

        # 1. Compute the output for each intra-chunk (diagonal blocks)
        L = torch.exp(segsum(A))
        Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, L, x)

        # 2. Compute the state for each intra-chunk
        # (right term of low-rank factorization of off-diagonal blocks; B terms)
        decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
        states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, x)

        # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
        # (middle term of factorization of off-diag blocks; A terms)
        if initial_states is None:
            initial_states = torch.zeros_like(states[:, :1])
        states = torch.cat([initial_states, states], dim=1)
        decay_chunk = torch.exp(segsum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
        new_states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
        states, final_state = new_states[:, :-1], new_states[:, -1]

        # 4. Compute state -> output conversion per chunk
        # (left term of low-rank factorization of off-diagonal blocks; C terms)
        state_decay_out = torch.exp(A_cumsum)
        Y_off = torch.einsum("bclhn,bchpn,bhcl->bclhp", C, states, state_decay_out)

        # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
        y = Y_diag + Y_off
        # [bsz, -1, chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
        y = y.reshape(y.shape[0], -1, y.shape[-2], y.shape[-1])

        # Add D residual to final output
        y = y + D_residual

        # Cutting off padded chunks
        if pad_size > 0:
            y = y[:, :seq_len, :, :]

        if not return_final_states:
            return y
        else:
            return y, final_state

    def slow_forward(self, hidden_states, cache):
        seq_len = hidden_states.shape[1]

        # Managing cache state
        if cache is not None:
            cached_start = not cache.has_previous_state
            cached_forward = not cached_start
        else:
            cached_start = False
            cached_forward = False

        # 1. Parallel projection for the input
        zxbcdt = self.in_proj(hidden_states)

        # Reconstructing the necessary vars
        d_mlp = (zxbcdt.shape[-1] - 2 * self.intermediate_size - 2 * self.ssm_state_size - self.num_heads) // 2
        z0, x0, z, xBC, dt = torch.split(
            zxbcdt,
            [d_mlp, d_mlp, self.intermediate_size, self.intermediate_size + 2 * self.ssm_state_size, self.num_heads],
            dim=-1,
        )

        # 2. Causal convolution for partial set of variables ("input" (x), B, C)
        # Init cache with first "real" values
        if cached_start:
            xBC_t = xBC.transpose(1, 2)
            cache.conv_states[self.layer_idx].copy_(F.pad(xBC_t, (self.conv_kernel_size - xBC_t.shape[-1], 0)))

        if cached_forward:
            cache.conv_states[self.layer_idx].copy_(torch.roll(cache.conv_states[self.layer_idx], shifts=-1, dims=-1))
            cache.conv_states[self.layer_idx][:, :, -1] = xBC.squeeze(1)
            xBC = torch.sum(cache.conv_states[self.layer_idx] * self.conv1d.weight.squeeze(1), dim=-1)
            if self.conv1d.bias is not None:
                xBC = xBC + self.conv1d.bias
            xBC = self.act(xBC)
        else:
            xBC = self.act(self.conv1d(xBC.transpose(1, 2))[..., :seq_len].transpose(1, 2))

        # Reconstruct causal convolution vars
        x, B, C = torch.split(xBC, [self.intermediate_size, self.ssm_state_size, self.ssm_state_size], dim=-1)

        # 3. State Space Duality (SSD)
        # Discretize 1-SS(a)
        A = -torch.exp(self.A_log.float())  # .float() to avoid infs/nans

        if not cached_forward:
            y = self._ssd_naive(
                # [bsz, seq_len, intermediate_size] -> [bsz, seq_len, num_heads, head_dim]
                x=x.reshape(x.shape[0], x.shape[1], -1, self.head_dim),
                dt=dt,
                A=A,
                # [bsz, seq_len, state_size] -> [bsz, seq_len, num_groups=1, state_size]
                B=B.unsqueeze(-2),
                # [bsz, seq_len, state_size] -> [bsz, seq_len, num_groups=1, state_size]
                C=C.unsqueeze(-2),
                chunk_size=self.chunk_size,
                D=self.D,
                initial_states=None,
                dt_bias=self.dt_bias,
                dt_min=self.dt_min,
                dt_max=self.dt_max,
                return_final_states=cached_start,
            )

            if cached_start:
                y, last_state = y
                if cached_start:
                    cache.ssm_states[self.layer_idx].copy_(last_state)

            # [bsz, seq_len, num_heads, head_dim] -> [bsz, seq_len, intermediate_size]
            y = y.reshape(y.shape[0], y.shape[1], -1)
        else:
            # Get time step with softplus and bias
            dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype))
            dt = dt.squeeze(1)

            # Discretize A
            dA = torch.exp(dt * A)

            # Discretize B and x
            # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
            x = x.reshape(x.shape[0], -1, self.head_dim)
            dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)

            # State calculation
            cache.ssm_states[self.layer_idx].copy_(
                cache.ssm_states[self.layer_idx] * dA.unsqueeze(-1).unsqueeze(-1) + dBx
            )

            # Subsequent output
            y = torch.einsum("bhpn,bn->bhp", cache.ssm_states[self.layer_idx].to(C.dtype), C)

            # D skip connection
            y = y + self.D.unsqueeze(-1) * x

            # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
            y = y.reshape(y.shape[0], -1).unsqueeze(1)

        # 4. Gate normalization introduced for instability, see section 7 of the paper
        y = self.norm(y, residual=z)
        if d_mlp > 0:
            y = torch.cat([self.act(z0) * x0, y], dim=-1)

        # 5. Out projecting
        y = self.out_proj(y)

        return y

    def forward(self, hidden_states, cache: Optional[HybridMamba2AttentionDynamicCache] = None):
        # TODO: check version for AMD support?
        if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
            return self.triton_kernels_forward(hidden_states, cache)
        return self.slow_forward(hidden_states, cache)


# Adapted from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mamba2
# An optional residual normalization has been integrated
class Mamba2RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Mamba2RMSNorm is equivalent to LlamaRMSNorm but with optional residual normalizing
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, hidden_states, residual=None):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)

        # Residual normalization introduced for instability, see section 7 of the paper
        if residual is not None:
            hidden_states = hidden_states * F.silu(residual.to(torch.float32))

        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)

        return self.weight * hidden_states.to(input_dtype)


# Adapted from transformers.models.mamba.modeling_mamba.MambaBlock
# Allows attention instead of mamba2 and an optional MLP layer afterward
class Mamba2Block(nn.Module):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.attention_layer = layer_idx in config.attention_layers_idx
        self.mlp_layer = config.mlp_intermediate_size > 0
        self.residual_in_fp32 = config.residual_in_fp32
        self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)

        # Mixer is either attention layer or mamba2 layer
        if self.attention_layer:
            self.mixer = MAMBA2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
        else:
            self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)

        # Following mlp layer is optional
        if self.mlp_layer:
            self.norm2 = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
            self.mlp = Mamba2MLP(config, layer_idx=layer_idx)
        else:
            self.norm2 = None
            self.mlp = None

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        position_ids: torch.LongTensor,
        cache: Optional[HybridMamba2AttentionDynamicCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ):
        dtype = hidden_states.dtype

        residual = hidden_states
        hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
        if self.residual_in_fp32:
            residual = residual.to(torch.float32)

        # Mamba2 path
        if not self.attention_layer:
            hidden_states = self.mixer(hidden_states, cache=cache)
            attn_weights = None
        # Attention path
        else:
            hidden_states, attn_weights = self.mixer(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                cache=cache,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )
        hidden_states = (residual + hidden_states).to(dtype)

        if self.mlp_layer:
            residual = hidden_states
            hidden_states = self.norm2(hidden_states.to(dtype=self.norm2.weight.dtype))
            if self.residual_in_fp32:
                residual = residual.to(torch.float32)

            hidden_states = self.mlp(hidden_states)
            hidden_states = (hidden_states + residual).to(dtype)

        return hidden_states, attn_weights


class Mamba2PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = Mamba2Config
    base_model_prefix = "backbone"
    _no_split_modules = ["Mamba2Block"]
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True  # Note: only supports HybridMamba2AttentionDynamicCache
    _is_stateful = True

    # Adapted from transformers.models.mamba.modeling_mamba.MambaPreTrainedModel._init_weights
    # Only using dt bias and rescale_prenorm_residual is expanded when using the additional MLP layer
    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, Mamba2Mixer):
            module.A_log._no_weight_decay = True
            module.D._no_weight_decay = True

            dt = torch.exp(
                torch.rand(self.config.mamba2_num_heads)
                * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
                + math.log(self.config.time_step_min)
            ).clamp(min=self.config.time_step_floor)
            # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
            inv_dt = dt + torch.log(-torch.expm1(-dt))
            with torch.no_grad():
                module.dt_bias.copy_(inv_dt)
            module.dt_bias._no_reinit = True
            module.dt_bias._no_weight_decay = True

        if isinstance(module, nn.Linear):
            if module.bias is not None:
                if not getattr(module.bias, "_no_reinit", False):
                    nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, std=self.config.emb_initializer_range)
        elif isinstance(module, nn.Conv1d):
            if self.config.conv_initializer_range is not None:
                nn.init.uniform_(
                    module.weight, -self.config.conv_initializer_range, self.config.conv_initializer_range
                )

        if self.config.rescale_prenorm_residual:
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            for name, p in module.named_parameters():
                if name in ["out_proj.weight", "fc2.weight"]:
                    # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                    # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
                    # We need to reinit p since this code could be called multiple times
                    # Having just p *= scale would repeatedly scale it down
                    nn.init.kaiming_uniform_(p, a=math.sqrt(5))

                    # mlp layer is considered as an additional overhead
                    n_residuals = 2 if self.config.mlp_intermediate_size > 0 else 1
                    with torch.no_grad():
                        p /= math.sqrt(n_residuals * self.config.num_hidden_layers)


MAMBA2_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

MAMBA2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`HybridMamba2AttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            A HybridMamba2AttentionDynamicCache object containing pre-computed hidden-states (keys, values, and, if used, the convolution in the
            self-attention blocks and convolution and ssm states in the mamba2 blocks) that can be used (see `past_key_values` input)
            to speed up sequential decoding.
            Key and value cache tensors have shape `(batch_size, num_key_value_heads, seq_len, attention_head_dim)`.
            Convolution and ssm states tensors have shape `(batch_size, intermediate_size + 2 * state_size, mamba2_conv_kernel)` if used in the mamba2 block
            else it has shape `(batch_size, attention_head_dim * (num_attention_heads + 2 * num_key_value_heads), attention_conv_kernel)`
            and `(batch_size, mamba2_num_heads, mamba2_head_dim, state_size)` respectively.
            See the `HybridMamba2AttentionDynamicCache` class for more details.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    "The bare MAMBA2 Model outputting raw hidden-states without any specific head on top.",
    MAMBA2_START_DOCSTRING,
)
class Mamba2Model(Mamba2PreTrainedModel):
    # Adapted from transformers.models.mamba.modeling_mamba.MambaModel.__init__ with Mamba->Mamba2
    # Additional information about possible attention layers
    def __init__(self, config):
        super().__init__(config)

        self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])

        self._attn_implementation = config._attn_implementation
        self._uses_attention_layers = len(config.attention_layers_idx) > 0

        self.gradient_checkpointing = False
        self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
        # Initialize weights and apply final processing
        self._register_load_state_dict_pre_hook(self.load_hook)
        self.post_init()

    # Copied from transformers.models.mamba.modeling_mamba.MambaModel.load_hook
    def load_hook(self, state_dict, prefix, *args):
        for k in state_dict:
            if "embedding." in k:
                state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
                break

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, new_embeddings):
        self.embeddings = new_embeddings

    @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    # Adapted from transformers.models.jamba.modeling_jamba.JambaModel.forward
    # No MoE logic, inits cache itself like Mamba does, and handles position_ids like Llama
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[HybridMamba2AttentionDynamicCache] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):  # ^ is python for xor
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embeddings(input_ids)
        hidden_states = inputs_embeds

        # We allow empty caches on initial forward
        if past_key_values is None and use_cache:
            past_key_values = HybridMamba2AttentionDynamicCache(
                config=self.config,
                batch_size=inputs_embeds.shape[0],
                device=inputs_embeds.device,
                dtype=inputs_embeds.dtype,
            )

        # LLama based positions
        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for mixer_block in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                out = self._gradient_checkpointing_func(
                    mixer_block.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                out = mixer_block(
                    hidden_states=hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    cache=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = out[0]

            if output_attentions:
                if out[1] is not None:
                    # Append attentions only of attention layers. Mamba2 layers return `None` as the attention weights
                    all_self_attns += (out[1],)

        hidden_states = self.norm_f(hidden_states)

        # Add hidden states from the last block
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if past_key_values and not past_key_values.has_previous_state:
            past_key_values.has_previous_state = True

        next_cache = None if not use_cache else past_key_values

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    # Adapted from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    # Custom hybrid cache instead
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: HybridMamba2AttentionDynamicCache,
        output_attentions: bool,
    ):
        if not self._uses_attention_layers:
            return None

        if self._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0

        # TODO: check if this is compatible with this custom cache format
        if self._attn_implementation == "sdpa" and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        target_length = (
            attention_mask.shape[-1]
            if isinstance(attention_mask, torch.Tensor)
            else past_seen_tokens + sequence_length
        )

        if attention_mask is not None and attention_mask.dim() == 4:
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
            if attention_mask.max() != 0:
                raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
            causal_mask = attention_mask
        else:
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )
        if (
            self._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask


@add_start_docstrings(
    """
    The MAMBA2 Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
    """,
    MAMBA2_START_DOCSTRING,
)
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.backbone = Mamba2Model(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_input_embeddings(self):
        return self.backbone.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        return self.backbone.set_input_embeddings(new_embeddings)

    # Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM.prepare_inputs_for_generation
    # We omit some args Mamba2 doesn't use such as output_router_logits and num_logits_to_keep; additional optional reinit of the cache
    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        **kwargs,
    ):
        empty_past_kv = past_key_values is None

        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if not empty_past_kv:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        # Initialize cache, if necessary
        if empty_past_kv:
            past_key_values = HybridMamba2AttentionDynamicCache(
                config=self.config,
                batch_size=input_ids.shape[0],
                device=self.device,
                dtype=self.dtype,
            )

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if not empty_past_kv:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # If `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and empty_past_kv:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
            }
        )
        return model_inputs

    @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[HybridMamba2AttentionDynamicCache] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.backbone(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()

        loss = None
        if labels is not None:
            # Move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->Mamba2, torch.tanh->F.silu
class Mamba2ClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(
        self,
        input_dim: int,
        inner_dim: int,
        num_classes: int,
        pooler_dropout: float,
    ):
        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states


@add_start_docstrings(
    """
    Mamba2 Model backbone with a sequence classification/regression head on top
    (a linear layer on top of the pooled output) e.g. for GLUE tasks.

    [`Mamba2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token.
    If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
    If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    MAMBA2_START_DOCSTRING,
)
class Mamba2ForSequenceClassification(Mamba2PreTrainedModel):
    # Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.__init__ with Bart->Mamba2,d_model->hidden_size,model->backbone
    def __init__(self, config: Mamba2Config, **kwargs):
        super().__init__(config, **kwargs)
        self.backbone = Mamba2Model(config)
        self.classification_head = Mamba2ClassificationHead(
            config.hidden_size,
            config.hidden_size,
            config.num_labels,
            config.classifier_dropout,
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.backbone.embeddings

    def set_input_embeddings(self, value):
        self.backbone.embeddings = value

    @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC)
    @add_code_sample_docstrings(
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    # Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification.forward with self.num_labels->self.config.num_labels,self.score->self.classification_head,self.model->self.backbone
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.backbone(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.classification_head(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.config.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.config.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.config.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )