Upload 9 files
Browse files- config.json +67 -0
- configuration_mamba2attn.py +301 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_mamba2attn.py +2020 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"A_initializer_range": [
|
3 |
+
1,
|
4 |
+
16
|
5 |
+
],
|
6 |
+
"_name_or_path": "OuteAI/Lite-Oute-2-Mamba2Attn-Base",
|
7 |
+
"architectures": [
|
8 |
+
"Mamba2ForCausalLM"
|
9 |
+
],
|
10 |
+
"attention_conv_kernel": 4,
|
11 |
+
"attention_head_dim": 128,
|
12 |
+
"attention_layers_idx": [
|
13 |
+
6,
|
14 |
+
12,
|
15 |
+
18,
|
16 |
+
24
|
17 |
+
],
|
18 |
+
"auto_map": {
|
19 |
+
"AutoConfig": "configuration_mamba2attn.Mamba2Config",
|
20 |
+
"AutoModelForCausalLM": "modeling_mamba2attn.Mamba2ForCausalLM"
|
21 |
+
},
|
22 |
+
"bos_token_id": 1,
|
23 |
+
"chunk_size": 256,
|
24 |
+
"classifier_dropout": 0.1,
|
25 |
+
"conv_initializer_range": null,
|
26 |
+
"emb_initializer_range": 0.02,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"expand": 2,
|
29 |
+
"hidden_act": "silu",
|
30 |
+
"hidden_size": 1024,
|
31 |
+
"intermediate_size": 2048,
|
32 |
+
"layer_norm_epsilon": 1e-05,
|
33 |
+
"mamba2_conv_kernel": 4,
|
34 |
+
"mamba2_head_dim": 64,
|
35 |
+
"mamba2_num_heads": 32,
|
36 |
+
"max_position_embeddings": 8192,
|
37 |
+
"mlp_intermediate_size": 0,
|
38 |
+
"mlp_padding_size": 128,
|
39 |
+
"model_type": "mamba2",
|
40 |
+
"num_attention_heads": 16,
|
41 |
+
"num_hidden_layers": 32,
|
42 |
+
"num_key_value_heads": 16,
|
43 |
+
"pad_token_id": 0,
|
44 |
+
"rescale_prenorm_residual": false,
|
45 |
+
"residual_in_fp32": true,
|
46 |
+
"rope_emb_dim": 64,
|
47 |
+
"rope_scaling": null,
|
48 |
+
"rope_theta": 10000.0,
|
49 |
+
"state_size": 128,
|
50 |
+
"tie_embedding_weights": true,
|
51 |
+
"time_step_floor": 0.0001,
|
52 |
+
"time_step_limit": [
|
53 |
+
0.0,
|
54 |
+
Infinity
|
55 |
+
],
|
56 |
+
"time_step_max": 0.1,
|
57 |
+
"time_step_min": 0.001,
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.44.2",
|
60 |
+
"use_attention_out_bias": false,
|
61 |
+
"use_attention_qkv_bias": false,
|
62 |
+
"use_cache": true,
|
63 |
+
"use_conv_bias": true,
|
64 |
+
"use_mamba2_bias": false,
|
65 |
+
"use_mlp_bias": false,
|
66 |
+
"vocab_size": 32768
|
67 |
+
}
|
configuration_mamba2attn.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Implementation from: https://github.com/huggingface/transformers/pull/32027
|
17 |
+
|
18 |
+
"""MAMBA2 configuration"""
|
19 |
+
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class Mamba2Config(PretrainedConfig):
|
30 |
+
"""
|
31 |
+
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the MAMBA2
|
34 |
+
[state-spaces/mamba2-130m](https://huggingface.co/state-spaces/mamba2-130m) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 50280):
|
42 |
+
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`Mamba2Model`].
|
44 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
45 |
+
Padding token id.
|
46 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
47 |
+
The id of the beginning of sentence token in the vocabulary.
|
48 |
+
eos_token_id (`int`, *optional*, defaults to 0):
|
49 |
+
The id of the end of sentence token in the vocabulary.
|
50 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
51 |
+
Dimensionality of the embeddings and hidden states.
|
52 |
+
state_size (`int`, *optional*, defaults to 128):
|
53 |
+
Shape of the state space latents.
|
54 |
+
expand (`int`, *optional*, defaults to 2):
|
55 |
+
Expanding factor used to determine the intermediate size.
|
56 |
+
chunk_size (`int`, *optional*, defaults to 256):
|
57 |
+
Block / Chunk size for the HW-efficient algorithm which parallelizes on intra- and inter-chunk calculations.
|
58 |
+
mamba2_conv_kernel (`int`, *optional*, defaults to 4):
|
59 |
+
Size of the convolution kernel in the mamba2 mixer.
|
60 |
+
attention_conv_kernel (`int`, *optional*, defaults to 4):
|
61 |
+
Size of the convolution kernel in the attention block.
|
62 |
+
mlp_intermediate_size (`int`, *optional*, defaults to 0):
|
63 |
+
Dimensionality of up-projections within the MLP blocks. If set to <=0, then MLP blocks are disabled.
|
64 |
+
mlp_padding_size (`int`, *optional*, defaults to 128):
|
65 |
+
Padding `mlp_intermediate_size` to a multiple of this.
|
66 |
+
mamba2_head_dim (`int`, *optional*, defaults to 64):
|
67 |
+
Multi-input SSM head dimension.
|
68 |
+
attention_head_dim (`int`, *optional*, defaults to 128):
|
69 |
+
Multi-head attention's head dimension.
|
70 |
+
num_attention_heads (`int`, *optional*, defaults to 30):
|
71 |
+
The number of heads in multi-head attention.
|
72 |
+
num_key_value_heads (`int`, *optional*, defaults to 30):
|
73 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
74 |
+
`attention_num_key_value_heads=attention_num_heads`, the model will use Multi Head Attention (MHA), if
|
75 |
+
`attention_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
76 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
77 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
78 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `attention_num_heads`.
|
79 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
80 |
+
Number of hidden layers in the model.
|
81 |
+
attention_layers_idx (`List[int]`, *optional*, defaults to `[]`):
|
82 |
+
The specific layers that exchange the mamba2 mixer block with the attention equivalent.
|
83 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
84 |
+
The epsilon to use in the layer normalization layers.
|
85 |
+
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether or not to use bias in the convolution layer of the mixer block.
|
87 |
+
use_mlp_bias (`bool`, *optional*, defaults to `False`):
|
88 |
+
Whether or not to use a bias in the up- and downprojections of the MLP block.
|
89 |
+
use_mamba2_bias (`bool`, *optional*, defaults to `False`):
|
90 |
+
Whether or not to use bias in ["in_proj", "out_proj"] of the mamba2 mixer block.
|
91 |
+
use_attention_qkv_bias (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether or not to use bias in the qkv projection of the attention block.
|
93 |
+
use_attention_out_bias (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not to use bias in the out projection of the attention block.
|
95 |
+
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
96 |
+
The non-linear activation function (function or string) in the decoder.
|
97 |
+
emb_initializer_range (`float`, *optional*, defaults to 0.02):
|
98 |
+
The standard deviation of the truncated_normal_initializer for initializing the embedding weight matrix.
|
99 |
+
conv_initializer_range (`float`, *optional*):
|
100 |
+
The range for uniformly initializing the convolution weights.
|
101 |
+
A_initializer_range (`List[int]`, *optional*, defaults to `[1, 16]`):
|
102 |
+
The range for uniformly initializing the 1-SS(a) scalar.
|
103 |
+
time_step_min (`float`, *optional*, defaults to 0.001):
|
104 |
+
Minimum `time_step` used to bound `dt_proj.bias`.
|
105 |
+
time_step_max (`float`, *optional*, defaults to 0.1):
|
106 |
+
Maximum `time_step` used to bound `dt_proj.bias`.
|
107 |
+
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
108 |
+
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
109 |
+
time_step_limit (`List[float]`, *optional*, defaults to `[0.0, inf]`):
|
110 |
+
Clapping values for the dt weights.
|
111 |
+
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
112 |
+
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
|
113 |
+
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether or not to rescale `out_proj` weights when initializing.
|
115 |
+
rope_emb_dim (`int`, *optional*, defaults to 64):
|
116 |
+
Embedding dimension of the RoPE embeddings.
|
117 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
118 |
+
The base period of the RoPE embeddings.
|
119 |
+
rope_scaling (`Dict`, *optional*):
|
120 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
121 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
122 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
123 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
124 |
+
these scaling strategies behave:
|
125 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
126 |
+
experimental feature, subject to breaking API changes in future versions.
|
127 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
128 |
+
The maximum sequence length that this model might ever be used with. This is based on the context length the
|
129 |
+
Mamba2 models have been trained on. Also necessary when using any sort of RoPE embeddings.
|
130 |
+
tie_embedding_weights (`bool`, *optional*, defaults to `True`):
|
131 |
+
Whether or not to tie the lm head to the input embeddings.
|
132 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
133 |
+
Whether or not the cache should be used.
|
134 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
135 |
+
The dropout ratio for the classification head in [`Mamba2ForSequenceClassification`] model.
|
136 |
+
|
137 |
+
Example:
|
138 |
+
|
139 |
+
```python
|
140 |
+
>>> from transformers import Mamba2Config, Mamba2Model
|
141 |
+
|
142 |
+
>>> # Initializing a Mamba2 configuration
|
143 |
+
>>> configuration = Mamba2Config()
|
144 |
+
|
145 |
+
>>> # Initializing a model (with random weights) from the configuration
|
146 |
+
>>> model = Mamba2Model(configuration)
|
147 |
+
|
148 |
+
>>> # Accessing the model configuration
|
149 |
+
>>> configuration = model.config
|
150 |
+
```
|
151 |
+
"""
|
152 |
+
|
153 |
+
model_type = "mamba2"
|
154 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
vocab_size=50280,
|
159 |
+
pad_token_id=0,
|
160 |
+
bos_token_id=0,
|
161 |
+
eos_token_id=0,
|
162 |
+
hidden_size=768,
|
163 |
+
state_size=128,
|
164 |
+
expand=2,
|
165 |
+
chunk_size=256,
|
166 |
+
mamba2_conv_kernel=4,
|
167 |
+
attention_conv_kernel=4,
|
168 |
+
mlp_intermediate_size=0,
|
169 |
+
mlp_padding_size=128,
|
170 |
+
mamba2_head_dim=64,
|
171 |
+
attention_head_dim=128,
|
172 |
+
num_attention_heads=30,
|
173 |
+
num_key_value_heads=30,
|
174 |
+
num_hidden_layers=24,
|
175 |
+
attention_layers_idx=None,
|
176 |
+
layer_norm_epsilon=1e-5,
|
177 |
+
use_conv_bias=True,
|
178 |
+
use_mlp_bias=False,
|
179 |
+
use_mamba2_bias=False,
|
180 |
+
use_attention_qkv_bias=False,
|
181 |
+
use_attention_out_bias=False,
|
182 |
+
hidden_act="silu",
|
183 |
+
emb_initializer_range=0.02,
|
184 |
+
conv_initializer_range=None,
|
185 |
+
A_initializer_range=None,
|
186 |
+
time_step_min=0.001,
|
187 |
+
time_step_max=0.1,
|
188 |
+
time_step_floor=1e-4,
|
189 |
+
time_step_limit=None,
|
190 |
+
residual_in_fp32=True,
|
191 |
+
rescale_prenorm_residual=False,
|
192 |
+
rope_emb_dim=64,
|
193 |
+
rope_theta=10000.0,
|
194 |
+
rope_scaling=None,
|
195 |
+
max_position_embeddings=2048,
|
196 |
+
tie_embedding_weights=True,
|
197 |
+
use_cache=True,
|
198 |
+
classifier_dropout=0.1,
|
199 |
+
**kwargs,
|
200 |
+
):
|
201 |
+
# Avoid mutable default args
|
202 |
+
attention_layers_idx = [] if attention_layers_idx is None else attention_layers_idx
|
203 |
+
A_initializer_range = [1, 16] if A_initializer_range is None else A_initializer_range
|
204 |
+
time_step_limit = [0.0, float("inf")] if time_step_limit is None else time_step_limit
|
205 |
+
|
206 |
+
self.vocab_size = vocab_size
|
207 |
+
self.pad_token_id = pad_token_id
|
208 |
+
self.bos_token_id = bos_token_id
|
209 |
+
self.eos_token_id = eos_token_id
|
210 |
+
self.hidden_size = hidden_size
|
211 |
+
self.state_size = state_size
|
212 |
+
self.expand = expand
|
213 |
+
self.intermediate_size = int(expand * self.hidden_size)
|
214 |
+
self.chunk_size = chunk_size
|
215 |
+
self.mamba2_conv_kernel = mamba2_conv_kernel
|
216 |
+
self.attention_conv_kernel = attention_conv_kernel
|
217 |
+
self.mlp_padding_size = mlp_padding_size
|
218 |
+
self.mlp_intermediate_size = mlp_intermediate_size
|
219 |
+
self.mamba2_head_dim = mamba2_head_dim
|
220 |
+
self.mamba2_num_heads = self.intermediate_size // self.mamba2_head_dim
|
221 |
+
self.attention_head_dim = attention_head_dim
|
222 |
+
self.num_attention_heads = num_attention_heads
|
223 |
+
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
|
224 |
+
self.num_hidden_layers = num_hidden_layers
|
225 |
+
self.attention_layers_idx = attention_layers_idx
|
226 |
+
self._attention_layers_idx_validation()
|
227 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
228 |
+
self.use_conv_bias = use_conv_bias
|
229 |
+
self.use_mlp_bias = use_mlp_bias
|
230 |
+
self.use_mamba2_bias = use_mamba2_bias
|
231 |
+
self.use_attention_qkv_bias = use_attention_qkv_bias
|
232 |
+
self.use_attention_out_bias = use_attention_out_bias
|
233 |
+
self.hidden_act = hidden_act
|
234 |
+
self.emb_initializer_range = emb_initializer_range
|
235 |
+
self.conv_initializer_range = conv_initializer_range
|
236 |
+
self.A_initializer_range = A_initializer_range
|
237 |
+
self.time_step_min = time_step_min
|
238 |
+
self.time_step_max = time_step_max
|
239 |
+
self.time_step_floor = time_step_floor
|
240 |
+
self.time_step_limit = time_step_limit
|
241 |
+
self.residual_in_fp32 = residual_in_fp32
|
242 |
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
243 |
+
self.rope_emb_dim = rope_emb_dim
|
244 |
+
self.rope_theta = rope_theta
|
245 |
+
self.rope_scaling = rope_scaling
|
246 |
+
if self.rope_emb_dim > 0:
|
247 |
+
self._rope_scaling_validation()
|
248 |
+
self.max_position_embeddings = max_position_embeddings
|
249 |
+
self.tie_embedding_weights = tie_embedding_weights
|
250 |
+
self.use_cache = use_cache
|
251 |
+
self.classifier_dropout = classifier_dropout
|
252 |
+
|
253 |
+
super().__init__(
|
254 |
+
bos_token_id=bos_token_id,
|
255 |
+
eos_token_id=eos_token_id,
|
256 |
+
pad_token_id=pad_token_id,
|
257 |
+
tie_embedding_weights=tie_embedding_weights,
|
258 |
+
**kwargs,
|
259 |
+
)
|
260 |
+
|
261 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
262 |
+
def _rope_scaling_validation(self):
|
263 |
+
"""
|
264 |
+
Validate the `rope_scaling` configuration.
|
265 |
+
"""
|
266 |
+
if self.rope_scaling is None:
|
267 |
+
return
|
268 |
+
|
269 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
270 |
+
raise ValueError(
|
271 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
272 |
+
)
|
273 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
274 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
275 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
276 |
+
raise ValueError(
|
277 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
278 |
+
)
|
279 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
280 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
281 |
+
|
282 |
+
def _attention_layers_idx_validation(self):
|
283 |
+
"""
|
284 |
+
Validate the `attention_layers_idx` configuration.
|
285 |
+
"""
|
286 |
+
if isinstance(self.attention_layers_idx, list) and len(self.attention_layers_idx) == 0:
|
287 |
+
return
|
288 |
+
|
289 |
+
if not isinstance(self.attention_layers_idx, List) and all(
|
290 |
+
isinstance(x, int) for x in self.attention_layers_idx
|
291 |
+
):
|
292 |
+
raise ValueError(
|
293 |
+
"`attention_layers_idx` must be a list of integers indicating the attention layers, "
|
294 |
+
f"got {self.attention_layers_idx}"
|
295 |
+
)
|
296 |
+
|
297 |
+
if min(self.attention_layers_idx) < 0 or max(self.attention_layers_idx) >= self.num_hidden_layers:
|
298 |
+
raise ValueError(
|
299 |
+
"`attention_layers_idx` has out-of-range indices, "
|
300 |
+
f"got {self.attention_layers_idx}, but expected indices in {list(range(self.num_hidden_layers))}"
|
301 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.44.2"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f180a1f218b19ad4a3986698893de8b773c11a7d3065d7a4b7adaf26e4babb3
|
3 |
+
size 1008294800
|
modeling_mamba2attn.py
ADDED
@@ -0,0 +1,2020 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Implementation from: https://github.com/huggingface/transformers/pull/32027
|
17 |
+
|
18 |
+
"""PyTorch MAMBA2 model."""
|
19 |
+
|
20 |
+
import math
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from packaging import version
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
33 |
+
from transformers.modeling_outputs import (
|
34 |
+
BaseModelOutputWithPast,
|
35 |
+
CausalLMOutputWithPast,
|
36 |
+
SequenceClassifierOutputWithPast,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from transformers.utils.import_utils import (
|
47 |
+
get_torch_version,
|
48 |
+
is_causal_conv1d_available,
|
49 |
+
is_flash_attn_2_available,
|
50 |
+
is_flash_attn_greater_or_equal_2_10,
|
51 |
+
)
|
52 |
+
from .configuration_mamba2attn import Mamba2Config
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
if is_flash_attn_2_available():
|
58 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
59 |
+
|
60 |
+
try:
|
61 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
62 |
+
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
|
63 |
+
except:
|
64 |
+
selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None
|
65 |
+
|
66 |
+
try:
|
67 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
68 |
+
except:
|
69 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
70 |
+
|
71 |
+
is_fast_path_available = all(
|
72 |
+
(
|
73 |
+
selective_state_update,
|
74 |
+
mamba_chunk_scan_combined,
|
75 |
+
mamba_split_conv1d_scan_combined,
|
76 |
+
causal_conv1d_fn,
|
77 |
+
causal_conv1d_update,
|
78 |
+
)
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
_CONFIG_FOR_DOC = "MambaConfig"
|
83 |
+
|
84 |
+
|
85 |
+
# Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache with Mamba->Mamba2
|
86 |
+
class HybridMamba2AttentionDynamicCache(DynamicCache):
|
87 |
+
"""
|
88 |
+
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba2 cache
|
89 |
+
(which has a constant shape regardless of seq_len).
|
90 |
+
|
91 |
+
This cache has two sets of lists of tensors: `key_cache`, `value_cache`, and 'conv_states' for attention cache and
|
92 |
+
`conv_states` and `ssm_states` for mamba2 cache. Each of these lists has `num_layers` tensors.
|
93 |
+
|
94 |
+
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_key_value_heads, seq_len, attention_head_dim)`,
|
95 |
+
while `conv_states` has a shape of `(batch_size, attention_head_dim * (num_attention_heads + 2 * num_key_value_heads), attention_conv_kernel)`
|
96 |
+
or `(batch_size, 0)` (empty tensors) and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
|
97 |
+
|
98 |
+
For mamba2 layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
|
99 |
+
while `conv_states` represents the convolution state and has a shape of `(batch_size, intermediate_size + 2 * state_size, mamba2_conv_kernel)`,
|
100 |
+
and `ssm_states` represents the ssm state and has a shape of `(batch_size, mamba2_num_heads, mamba2_head_dim, state_size)`.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
|
104 |
+
self.dtype = dtype
|
105 |
+
self.has_previous_state = False
|
106 |
+
|
107 |
+
in_channels = config.intermediate_size + 2 * config.state_size
|
108 |
+
ssm_state_size = config.state_size
|
109 |
+
mamba2_conv_kernel_size = config.mamba2_conv_kernel
|
110 |
+
attention_conv_kernel_size = config.attention_conv_kernel
|
111 |
+
mamba2_num_heads = config.mamba2_num_heads
|
112 |
+
mamba2_head_dim = config.mamba2_head_dim
|
113 |
+
attention_head_dim = config.attention_head_dim
|
114 |
+
attention_num_heads = config.num_attention_heads
|
115 |
+
attention_num_heads_kv = config.num_key_value_heads
|
116 |
+
attention_qkv_dim = attention_head_dim * (attention_num_heads + 2 * attention_num_heads_kv)
|
117 |
+
|
118 |
+
self.conv_states = []
|
119 |
+
self.ssm_states = []
|
120 |
+
self.transformer_layers = []
|
121 |
+
for i in range(config.num_hidden_layers):
|
122 |
+
if i not in config.attention_layers_idx:
|
123 |
+
self.conv_states += [
|
124 |
+
torch.zeros(batch_size, in_channels, mamba2_conv_kernel_size, device=device, dtype=dtype)
|
125 |
+
]
|
126 |
+
self.ssm_states += [
|
127 |
+
torch.zeros(
|
128 |
+
batch_size, mamba2_num_heads, mamba2_head_dim, ssm_state_size, device=device, dtype=dtype
|
129 |
+
)
|
130 |
+
]
|
131 |
+
else:
|
132 |
+
# Conv1d is optional for the attention layer
|
133 |
+
if attention_conv_kernel_size > 0:
|
134 |
+
self.conv_states += [
|
135 |
+
torch.zeros(
|
136 |
+
batch_size, attention_qkv_dim, attention_conv_kernel_size, device=device, dtype=dtype
|
137 |
+
)
|
138 |
+
]
|
139 |
+
else:
|
140 |
+
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
|
141 |
+
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
|
142 |
+
self.transformer_layers.append(i)
|
143 |
+
|
144 |
+
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
|
145 |
+
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
|
146 |
+
|
147 |
+
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.update
|
148 |
+
def update(
|
149 |
+
self,
|
150 |
+
key_states: torch.Tensor,
|
151 |
+
value_states: torch.Tensor,
|
152 |
+
layer_idx: int,
|
153 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
154 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
155 |
+
# Update the cache
|
156 |
+
if self.key_cache[layer_idx].shape[-1] == 0:
|
157 |
+
self.key_cache[layer_idx] = key_states
|
158 |
+
self.value_cache[layer_idx] = value_states
|
159 |
+
else:
|
160 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
|
161 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
|
162 |
+
|
163 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
164 |
+
|
165 |
+
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.reorder_cache
|
166 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
167 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
168 |
+
for layer_idx in range(len(self.key_cache)):
|
169 |
+
device = self.key_cache[layer_idx].device
|
170 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
171 |
+
device = self.value_cache[layer_idx].device
|
172 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
173 |
+
|
174 |
+
device = self.conv_states[layer_idx].device
|
175 |
+
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
|
176 |
+
device = self.ssm_states[layer_idx].device
|
177 |
+
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
|
178 |
+
|
179 |
+
# Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.get_seq_length
|
180 |
+
# Fixes issues when accessing on empty cache and allow mamba2 pure architectures
|
181 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
182 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
183 |
+
# Mamba2 layers don't need the seq_len either way
|
184 |
+
if len(self.transformer_layers) == 0:
|
185 |
+
return 0
|
186 |
+
|
187 |
+
# Take any layer that contains cache and not empty tensor
|
188 |
+
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
|
189 |
+
if len(self.key_cache) <= layer_idx:
|
190 |
+
return 0
|
191 |
+
|
192 |
+
# We also allow seq_len checks on empty tensors
|
193 |
+
size_idx = -2 if len(self.key_cache[layer_idx].shape) > 2 else -1
|
194 |
+
|
195 |
+
return self.key_cache[layer_idx].shape[size_idx]
|
196 |
+
|
197 |
+
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.to_legacy_cache with Mamba->Mamba2
|
198 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
199 |
+
raise NotImplementedError("HybridMamba2AttentionDynamicCache does not have a legacy cache equivalent.")
|
200 |
+
|
201 |
+
@classmethod
|
202 |
+
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.from_legacy_cache with Mamba->Mamba2
|
203 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
204 |
+
raise NotImplementedError("HybridMamba2AttentionDynamicCache does not have a legacy cache equivalent.")
|
205 |
+
|
206 |
+
|
207 |
+
class Mamba2MLP(nn.Module):
|
208 |
+
def __init__(self, config: Mamba2Config, layer_idx):
|
209 |
+
super().__init__()
|
210 |
+
self.layer_idx = layer_idx
|
211 |
+
|
212 |
+
self.hidden_size = config.hidden_size
|
213 |
+
self.original_intermediate_size = config.mlp_intermediate_size
|
214 |
+
self.mlp_padding_size = config.mlp_padding_size
|
215 |
+
|
216 |
+
self.intermediate_size = (
|
217 |
+
(self.original_intermediate_size + self.mlp_padding_size - 1)
|
218 |
+
// self.mlp_padding_size
|
219 |
+
* self.mlp_padding_size
|
220 |
+
)
|
221 |
+
|
222 |
+
self.fc1 = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.use_mlp_bias)
|
223 |
+
self.activation = config.hidden_act
|
224 |
+
self.act = ACT2FN[config.hidden_act]
|
225 |
+
self.fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_mlp_bias)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
y = self.fc1(x)
|
229 |
+
y, z = y.chunk(2, dim=-1)
|
230 |
+
y = y * self.act(z)
|
231 |
+
y = self.fc2(y)
|
232 |
+
return y
|
233 |
+
|
234 |
+
|
235 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mamba2
|
236 |
+
class Mamba2RotaryEmbedding(nn.Module):
|
237 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
238 |
+
super().__init__()
|
239 |
+
self.scaling_factor = scaling_factor
|
240 |
+
self.dim = dim
|
241 |
+
self.max_position_embeddings = max_position_embeddings
|
242 |
+
self.base = base
|
243 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
244 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
245 |
+
# For BC we register cos and sin cached
|
246 |
+
self.max_seq_len_cached = max_position_embeddings
|
247 |
+
|
248 |
+
@torch.no_grad()
|
249 |
+
def forward(self, x, position_ids):
|
250 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
251 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
252 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
253 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
254 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
255 |
+
device_type = x.device.type
|
256 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
257 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
258 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
259 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
260 |
+
cos = emb.cos()
|
261 |
+
sin = emb.sin()
|
262 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
263 |
+
|
264 |
+
|
265 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Mamba2
|
266 |
+
class Mamba2LinearScalingRotaryEmbedding(Mamba2RotaryEmbedding):
|
267 |
+
"""Mamba2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
268 |
+
|
269 |
+
def forward(self, x, position_ids):
|
270 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
271 |
+
position_ids = position_ids.float() / self.scaling_factor
|
272 |
+
cos, sin = super().forward(x, position_ids)
|
273 |
+
return cos, sin
|
274 |
+
|
275 |
+
|
276 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Mamba2
|
277 |
+
class Mamba2DynamicNTKScalingRotaryEmbedding(Mamba2RotaryEmbedding):
|
278 |
+
"""Mamba2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
279 |
+
|
280 |
+
def forward(self, x, position_ids):
|
281 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
282 |
+
seq_len = torch.max(position_ids) + 1
|
283 |
+
if seq_len > self.max_position_embeddings:
|
284 |
+
base = self.base * (
|
285 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
286 |
+
) ** (self.dim / (self.dim - 2))
|
287 |
+
inv_freq = 1.0 / (
|
288 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
289 |
+
)
|
290 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
291 |
+
|
292 |
+
cos, sin = super().forward(x, position_ids)
|
293 |
+
return cos, sin
|
294 |
+
|
295 |
+
|
296 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
297 |
+
def rotate_half(x):
|
298 |
+
"""Rotates half the hidden dims of the input."""
|
299 |
+
x1 = x[..., : x.shape[-1] // 2]
|
300 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
301 |
+
return torch.cat((-x2, x1), dim=-1)
|
302 |
+
|
303 |
+
|
304 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
305 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
306 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
q (`torch.Tensor`): The query tensor.
|
310 |
+
k (`torch.Tensor`): The key tensor.
|
311 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
312 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
313 |
+
position_ids (`torch.Tensor`, *optional*):
|
314 |
+
Deprecated and unused.
|
315 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
316 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
317 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
318 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
319 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
320 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
321 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
322 |
+
Returns:
|
323 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
324 |
+
"""
|
325 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
326 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
327 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
328 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
329 |
+
return q_embed, k_embed
|
330 |
+
|
331 |
+
|
332 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
333 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
334 |
+
"""
|
335 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
336 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
337 |
+
"""
|
338 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
339 |
+
if n_rep == 1:
|
340 |
+
return hidden_states
|
341 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
342 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
343 |
+
|
344 |
+
|
345 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Mamba2
|
346 |
+
class Mamba2Attention(nn.Module):
|
347 |
+
"""
|
348 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Possible switch to MQA when num_heads_kv < num_heads_q.
|
349 |
+
"""
|
350 |
+
|
351 |
+
def __init__(self, config: Mamba2Config, layer_idx: int):
|
352 |
+
super().__init__()
|
353 |
+
self.config = config
|
354 |
+
|
355 |
+
self.hidden_size = config.hidden_size
|
356 |
+
self.conv_kernel_size = config.attention_conv_kernel
|
357 |
+
self.head_dim = config.attention_head_dim
|
358 |
+
self.num_heads = config.num_attention_heads
|
359 |
+
self.num_heads_kv = config.num_key_value_heads
|
360 |
+
self.num_groups_kv = self.num_heads // self.num_heads_kv
|
361 |
+
# See https://github.com/state-spaces/mamba/issues/457#issuecomment-2221116217
|
362 |
+
# hidden_size % num_heads == 0 is not necessary due to this custom head projection dim
|
363 |
+
self.qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
364 |
+
self.out_dim = self.head_dim * self.num_heads
|
365 |
+
|
366 |
+
# Optional RoPE
|
367 |
+
self.rotary_emb_dim = config.rope_emb_dim
|
368 |
+
self.rope_theta = config.rope_theta
|
369 |
+
self._init_rope()
|
370 |
+
|
371 |
+
self.in_proj = nn.Linear(self.hidden_size, self.qkv_dim, bias=config.use_attention_qkv_bias)
|
372 |
+
# Optional conv1d
|
373 |
+
self._init_conv1d()
|
374 |
+
self.out_proj = nn.Linear(self.out_dim, self.hidden_size, bias=config.use_attention_out_bias)
|
375 |
+
|
376 |
+
self.is_causal = True
|
377 |
+
self.layer_idx = layer_idx
|
378 |
+
|
379 |
+
# We throw a similar fast path warning, in case no mamba2 block is used
|
380 |
+
if config.num_hidden_layers == len(config.attention_layers_idx):
|
381 |
+
if not is_causal_conv1d_available():
|
382 |
+
logger.warning_once(
|
383 |
+
"Convolution implementation in Mamba2 attention is falling back to naive implementation because `(causal_conv1d_fn, causal_conv1d_update)`"
|
384 |
+
"is None. To install follow https://github.com/Dao-AILab/causal-conv1d."
|
385 |
+
)
|
386 |
+
|
387 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaAttention._init_rope
|
388 |
+
# Rope is optional and can be ignored if rope_emb_dim <= 0
|
389 |
+
def _init_rope(self):
|
390 |
+
# RoPE is optional
|
391 |
+
if self.rotary_emb_dim < 1:
|
392 |
+
return
|
393 |
+
|
394 |
+
if self.config.rope_scaling is None:
|
395 |
+
self.rotary_emb = Mamba2RotaryEmbedding(
|
396 |
+
self.rotary_emb_dim,
|
397 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
398 |
+
base=self.rope_theta,
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
scaling_type = self.config.rope_scaling["type"]
|
402 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
403 |
+
if scaling_type == "linear":
|
404 |
+
self.rotary_emb = Mamba2LinearScalingRotaryEmbedding(
|
405 |
+
self.rotary_emb_dim,
|
406 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
407 |
+
scaling_factor=scaling_factor,
|
408 |
+
base=self.rope_theta,
|
409 |
+
)
|
410 |
+
elif scaling_type == "dynamic":
|
411 |
+
self.rotary_emb = Mamba2DynamicNTKScalingRotaryEmbedding(
|
412 |
+
self.rotary_emb_dim,
|
413 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
414 |
+
scaling_factor=scaling_factor,
|
415 |
+
base=self.rope_theta,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
419 |
+
|
420 |
+
def _init_conv1d(self):
|
421 |
+
# Conv1d is optional
|
422 |
+
if self.conv_kernel_size < 1:
|
423 |
+
return
|
424 |
+
|
425 |
+
self.conv1d = nn.Conv1d(
|
426 |
+
self.qkv_dim,
|
427 |
+
self.qkv_dim,
|
428 |
+
kernel_size=self.conv_kernel_size,
|
429 |
+
padding=self.conv_kernel_size - 1,
|
430 |
+
groups=self.qkv_dim,
|
431 |
+
)
|
432 |
+
|
433 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaAttention.forward
|
434 |
+
# Custom projections involving optional causal-conv-1d and optional (partial) RoPE
|
435 |
+
def forward(
|
436 |
+
self,
|
437 |
+
hidden_states: torch.FloatTensor,
|
438 |
+
attention_mask: torch.FloatTensor,
|
439 |
+
position_ids: torch.LongTensor,
|
440 |
+
cache: Optional[HybridMamba2AttentionDynamicCache] = None,
|
441 |
+
output_attentions: Optional[bool] = False,
|
442 |
+
use_cache: Optional[bool] = False,
|
443 |
+
):
|
444 |
+
bsz, q_len, _ = hidden_states.shape
|
445 |
+
|
446 |
+
# Apply attention-conv1d-specific projections and rope
|
447 |
+
query, key, value = self._attn_conv1d_projections_and_rope(
|
448 |
+
hidden_states=hidden_states, position_ids=position_ids, cache=cache, use_cache=use_cache
|
449 |
+
)
|
450 |
+
|
451 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
452 |
+
key = repeat_kv(key, self.num_groups_kv)
|
453 |
+
value = repeat_kv(value, self.num_groups_kv)
|
454 |
+
|
455 |
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
|
456 |
+
|
457 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
458 |
+
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
459 |
+
attn_weights = attn_weights + causal_mask
|
460 |
+
|
461 |
+
# upcast attention to fp32
|
462 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
463 |
+
attn_weights = nn.functional.dropout(attn_weights, p=0.0, training=self.training)
|
464 |
+
attn_output = torch.matmul(attn_weights, value)
|
465 |
+
|
466 |
+
# Reshape output
|
467 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
468 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
469 |
+
|
470 |
+
# Final projection
|
471 |
+
attn_output = self.out_proj(attn_output)
|
472 |
+
|
473 |
+
if not output_attentions:
|
474 |
+
attn_weights = None
|
475 |
+
|
476 |
+
return attn_output, attn_weights
|
477 |
+
|
478 |
+
def _conv1d(self, qkv, seq_len, cache, cached_start, cached_forward):
|
479 |
+
# Init cache with first "real" values
|
480 |
+
if cached_start:
|
481 |
+
qkv_t = qkv.transpose(1, 2)
|
482 |
+
cache.conv_states[self.layer_idx].copy_(
|
483 |
+
nn.functional.pad(qkv_t, (self.conv_kernel_size - qkv_t.shape[-1], 0))
|
484 |
+
)
|
485 |
+
|
486 |
+
if is_causal_conv1d_available():
|
487 |
+
if cached_forward:
|
488 |
+
qkv = causal_conv1d_update(
|
489 |
+
x=qkv.squeeze(1),
|
490 |
+
conv_state=cache.conv_states[self.layer_idx],
|
491 |
+
weight=self.conv1d.weight.squeeze(1),
|
492 |
+
bias=self.conv1d.bias,
|
493 |
+
).unsqueeze(1)
|
494 |
+
else:
|
495 |
+
qkv = causal_conv1d_fn(
|
496 |
+
x=qkv.transpose(1, 2),
|
497 |
+
weight=self.conv1d.weight.squeeze(1),
|
498 |
+
bias=self.conv1d.bias,
|
499 |
+
).transpose(1, 2)
|
500 |
+
else:
|
501 |
+
if cached_forward:
|
502 |
+
cache.conv_states[self.layer_idx].copy_(
|
503 |
+
torch.roll(cache.conv_states[self.layer_idx], shifts=-1, dims=-1)
|
504 |
+
)
|
505 |
+
cache.conv_states[self.layer_idx][:, :, -1] = qkv.squeeze(1)
|
506 |
+
qkv = torch.sum(cache.conv_states[self.layer_idx] * self.conv1d.weight.squeeze(1), dim=-1)
|
507 |
+
if self.conv1d.bias is not None:
|
508 |
+
qkv = qkv + self.conv1d.bias
|
509 |
+
qkv = qkv.unsqueeze(1)
|
510 |
+
else:
|
511 |
+
qkv = self.conv1d(qkv.transpose(1, 2))[..., :seq_len].transpose(1, 2).contiguous()
|
512 |
+
|
513 |
+
return qkv
|
514 |
+
|
515 |
+
# Moved to a separate function since it's optional
|
516 |
+
# Mixture of transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXAttention._attn_projections_and_rope and
|
517 |
+
# transformers.models.llama.modeling_llama.LlamaAttention.forward RoPE parts
|
518 |
+
# GPTNeoX for the partial (on dim) RoPE application, Llama for the general RoPE embeddings
|
519 |
+
def _apply_rope(
|
520 |
+
self,
|
521 |
+
query: torch.FloatTensor,
|
522 |
+
key: torch.FloatTensor,
|
523 |
+
value: torch.FloatTensor,
|
524 |
+
position_ids: torch.LongTensor,
|
525 |
+
):
|
526 |
+
# Compute rotary embeddings on rotary_emb_dim
|
527 |
+
query_rot = query[..., : self.rotary_emb_dim]
|
528 |
+
query_pass = query[..., self.rotary_emb_dim :]
|
529 |
+
key_rot = key[..., : self.rotary_emb_dim]
|
530 |
+
key_pass = key[..., self.rotary_emb_dim :]
|
531 |
+
|
532 |
+
# Compute RoPE and stitch it back together
|
533 |
+
cos, sin = self.rotary_emb(value, position_ids)
|
534 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
|
535 |
+
query = torch.cat((query, query_pass), dim=-1)
|
536 |
+
key = torch.cat((key, key_pass), dim=-1)
|
537 |
+
|
538 |
+
return query, key
|
539 |
+
|
540 |
+
def _attn_conv1d_projections_and_rope(
|
541 |
+
self,
|
542 |
+
hidden_states: torch.FloatTensor,
|
543 |
+
position_ids: torch.LongTensor,
|
544 |
+
cache: Optional[HybridMamba2AttentionDynamicCache] = None,
|
545 |
+
use_cache: Optional[bool] = False,
|
546 |
+
):
|
547 |
+
bsz, q_len, _ = hidden_states.shape
|
548 |
+
|
549 |
+
# Managing cache state
|
550 |
+
has_layer_past = cache is not None
|
551 |
+
if has_layer_past:
|
552 |
+
cached_start = not cache.has_previous_state
|
553 |
+
cached_forward = not cached_start
|
554 |
+
else:
|
555 |
+
cached_start = False
|
556 |
+
cached_forward = False
|
557 |
+
|
558 |
+
# Compute QKV
|
559 |
+
# Attention heads [batch, seq_len, hidden_size]
|
560 |
+
# --> [batch, seq_len, (head_dim * (num_heads(_q) + 2 * num_heads_kv)]
|
561 |
+
qkv = self.in_proj(hidden_states)
|
562 |
+
|
563 |
+
# (Optional) Apply Conv1d, caching is applied in-place
|
564 |
+
if self.conv_kernel_size > 0:
|
565 |
+
qkv = self._conv1d(
|
566 |
+
qkv, seq_len=qkv.shape[1], cache=cache, cached_start=cached_start, cached_forward=cached_forward
|
567 |
+
)
|
568 |
+
|
569 |
+
# Get the respective matrices from the parallel projection back
|
570 |
+
q, k, v = qkv.split(
|
571 |
+
[self.num_heads * self.head_dim, self.num_heads_kv * self.head_dim, self.num_heads_kv * self.head_dim],
|
572 |
+
dim=-1,
|
573 |
+
)
|
574 |
+
|
575 |
+
# Split combined hidden dims back into respective attention heads
|
576 |
+
# [batch, seq_len, hidden_size] --> [batch, seq_len, num_heads, head_dim]
|
577 |
+
query = q.reshape(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
578 |
+
key = k.reshape(bsz, q_len, self.num_heads_kv, self.head_dim).transpose(1, 2)
|
579 |
+
value = v.reshape(bsz, q_len, self.num_heads_kv, self.head_dim).transpose(1, 2)
|
580 |
+
|
581 |
+
# (Optional) RoPE
|
582 |
+
if self.rotary_emb_dim > 0:
|
583 |
+
# TODO do we need to cache sin and cos for RoPE, llama doesn't seem to cache it (except when using sink cache)?
|
584 |
+
query, key = self._apply_rope(query, key, value, position_ids)
|
585 |
+
|
586 |
+
# Cache KV values
|
587 |
+
if has_layer_past:
|
588 |
+
key, value = cache.update(key, value, self.layer_idx)
|
589 |
+
|
590 |
+
return query, key, value
|
591 |
+
|
592 |
+
|
593 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Mamba2
|
594 |
+
class Mamba2FlashAttention2(Mamba2Attention):
|
595 |
+
"""
|
596 |
+
Mamba2 flash attention module. This module inherits from `Mamba2Attention` as the weights of the module stays
|
597 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
598 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
599 |
+
"""
|
600 |
+
|
601 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
602 |
+
def __init__(self, *args, **kwargs):
|
603 |
+
super().__init__(*args, **kwargs)
|
604 |
+
|
605 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
606 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
607 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
608 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
609 |
+
|
610 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
611 |
+
# Custom projections involving optional causal-conv-1d and optional (partial) RoPE
|
612 |
+
def forward(
|
613 |
+
self,
|
614 |
+
hidden_states: torch.FloatTensor,
|
615 |
+
attention_mask: torch.FloatTensor,
|
616 |
+
position_ids: torch.LongTensor,
|
617 |
+
cache: Optional[HybridMamba2AttentionDynamicCache] = None,
|
618 |
+
output_attentions: Optional[bool] = False,
|
619 |
+
use_cache: Optional[bool] = False,
|
620 |
+
):
|
621 |
+
bsz, q_len, _ = hidden_states.shape
|
622 |
+
|
623 |
+
# Apply attention-conv1d-specific projections and rope
|
624 |
+
query, key, value = self._attn_conv1d_projections_and_rope(
|
625 |
+
hidden_states=hidden_states, position_ids=position_ids, cache=cache, use_cache=use_cache
|
626 |
+
)
|
627 |
+
|
628 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
629 |
+
key = repeat_kv(key, self.num_groups_kv)
|
630 |
+
value = repeat_kv(value, self.num_groups_kv)
|
631 |
+
|
632 |
+
# Permute to get the expected shape for Flash Attention
|
633 |
+
query = query.transpose(1, 2)
|
634 |
+
key = key.transpose(1, 2)
|
635 |
+
value = value.transpose(1, 2)
|
636 |
+
|
637 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
638 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
639 |
+
# cast them back in float16 / bfloat16 just to be sure everything works as expected.
|
640 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
641 |
+
input_dtype = query.dtype
|
642 |
+
if input_dtype == torch.float32:
|
643 |
+
if torch.is_autocast_enabled():
|
644 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
645 |
+
# Handle the case where the model is quantized
|
646 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
647 |
+
target_dtype = self.config._pre_quantization_dtype
|
648 |
+
else:
|
649 |
+
target_dtype = self.in_proj.weight.dtype
|
650 |
+
|
651 |
+
logger.warning_once(
|
652 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
653 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
654 |
+
f" {target_dtype}."
|
655 |
+
)
|
656 |
+
|
657 |
+
query = query.to(target_dtype)
|
658 |
+
key = key.to(target_dtype)
|
659 |
+
value = value.to(target_dtype)
|
660 |
+
|
661 |
+
# Compute attention
|
662 |
+
attn_weights = _flash_attention_forward(
|
663 |
+
query,
|
664 |
+
key,
|
665 |
+
value,
|
666 |
+
attention_mask,
|
667 |
+
q_len,
|
668 |
+
dropout=0.0,
|
669 |
+
softmax_scale=None,
|
670 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
671 |
+
is_causal=self.is_causal,
|
672 |
+
)
|
673 |
+
|
674 |
+
# Reshape outputs
|
675 |
+
attn_output = attn_weights.reshape(bsz, q_len, -1).contiguous()
|
676 |
+
attn_output = self.out_proj(attn_output)
|
677 |
+
|
678 |
+
if not output_attentions:
|
679 |
+
attn_weights = None
|
680 |
+
|
681 |
+
return attn_output, attn_weights
|
682 |
+
|
683 |
+
|
684 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mamba2
|
685 |
+
class Mamba2SdpaAttention(Mamba2Attention):
|
686 |
+
"""
|
687 |
+
Mamba2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
688 |
+
`Mamba2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
|
689 |
+
to adapt to the SDPA API.
|
690 |
+
"""
|
691 |
+
|
692 |
+
def __init__(self, *args, **kwargs):
|
693 |
+
super().__init__(*args, **kwargs)
|
694 |
+
|
695 |
+
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
|
696 |
+
# attn_mask, so we need to call `.contiguous()`. This was fixed in torch==2.2.0.
|
697 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577
|
698 |
+
self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0")
|
699 |
+
|
700 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
|
701 |
+
# Custom projections involving optional causal-conv-1d and optional (partial) RoPE
|
702 |
+
def forward(
|
703 |
+
self,
|
704 |
+
hidden_states: torch.FloatTensor,
|
705 |
+
attention_mask: torch.FloatTensor,
|
706 |
+
position_ids: torch.LongTensor,
|
707 |
+
cache: Optional[HybridMamba2AttentionDynamicCache] = None,
|
708 |
+
output_attentions: Optional[bool] = False,
|
709 |
+
use_cache: Optional[bool] = False,
|
710 |
+
):
|
711 |
+
if output_attentions:
|
712 |
+
logger.warning_once(
|
713 |
+
"`Mamba2SdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
|
714 |
+
"`output_attentions=True`. Falling back to the manual attention implementation, but specifying the manual "
|
715 |
+
"implementation will be required from Transformers version v5.0.0 onwards. "
|
716 |
+
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
717 |
+
)
|
718 |
+
return super().forward(
|
719 |
+
hidden_states=hidden_states,
|
720 |
+
attention_mask=attention_mask,
|
721 |
+
position_ids=position_ids,
|
722 |
+
output_attentions=output_attentions,
|
723 |
+
cache=cache,
|
724 |
+
use_cache=use_cache,
|
725 |
+
)
|
726 |
+
|
727 |
+
bsz, q_len, _ = hidden_states.size()
|
728 |
+
|
729 |
+
# Apply attention-conv1d-specific projections and rope
|
730 |
+
query, key, value = self._attn_conv1d_projections_and_rope(
|
731 |
+
hidden_states=hidden_states, position_ids=position_ids, cache=cache, use_cache=use_cache
|
732 |
+
)
|
733 |
+
|
734 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
735 |
+
key = repeat_kv(key, self.num_groups_kv)
|
736 |
+
value = repeat_kv(value, self.num_groups_kv)
|
737 |
+
|
738 |
+
causal_mask = attention_mask
|
739 |
+
if attention_mask is not None:
|
740 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
741 |
+
|
742 |
+
# Avoid torch==2.1.2 specific bug for the memory-efficient backend in SDPA
|
743 |
+
if self.require_contiguous_qkv and query.device.type == "cuda" and attention_mask is not None:
|
744 |
+
query = query.contiguous()
|
745 |
+
key = key.contiguous()
|
746 |
+
value = value.contiguous()
|
747 |
+
|
748 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
749 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
750 |
+
is_causal = True if attention_mask is None and q_len > 1 else False
|
751 |
+
|
752 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
753 |
+
query=query,
|
754 |
+
key=key,
|
755 |
+
value=value,
|
756 |
+
attn_mask=causal_mask,
|
757 |
+
dropout_p=0.0,
|
758 |
+
is_causal=is_causal,
|
759 |
+
)
|
760 |
+
|
761 |
+
# Reshape outputs
|
762 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
763 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
764 |
+
|
765 |
+
attn_output = self.out_proj(attn_output)
|
766 |
+
|
767 |
+
return attn_output, None
|
768 |
+
|
769 |
+
|
770 |
+
MAMBA2_ATTENTION_CLASSES = {
|
771 |
+
"eager": Mamba2Attention,
|
772 |
+
"flash_attention_2": Mamba2FlashAttention2,
|
773 |
+
"sdpa": Mamba2SdpaAttention,
|
774 |
+
}
|
775 |
+
|
776 |
+
|
777 |
+
class Mamba2Mixer(nn.Module):
|
778 |
+
"""
|
779 |
+
Using the found relation to the attention mechanism under certain conditions (State-Space-Duality SSD),
|
780 |
+
we use the Multi-input SSM which can be seen as a counterpart to the Multi-value Attention with analogues:
|
781 |
+
- X ~= V
|
782 |
+
- B ~= Q
|
783 |
+
- C ~= K
|
784 |
+
- A (1-SS(a)) ~= Attention Mask
|
785 |
+
|
786 |
+
For an overview, see the mamba2 paper, section 6, figure 4.
|
787 |
+
"""
|
788 |
+
|
789 |
+
def __init__(self, config: Mamba2Config, layer_idx: int):
|
790 |
+
super().__init__()
|
791 |
+
self.hidden_size = config.hidden_size
|
792 |
+
self.ssm_state_size = config.state_size
|
793 |
+
self.conv_kernel_size = config.mamba2_conv_kernel
|
794 |
+
self.intermediate_size = config.intermediate_size
|
795 |
+
self.head_dim = config.mamba2_head_dim
|
796 |
+
self.num_heads = config.mamba2_num_heads
|
797 |
+
self.chunk_size = config.chunk_size
|
798 |
+
self.dt_min = config.time_step_limit[0]
|
799 |
+
self.dt_max = config.time_step_limit[1]
|
800 |
+
self.layer_idx = layer_idx
|
801 |
+
self.use_bias = config.use_mamba2_bias
|
802 |
+
self.use_conv_bias = config.use_conv_bias
|
803 |
+
|
804 |
+
# Parallel projection of the input hidden states
|
805 |
+
self.in_proj = nn.Linear(
|
806 |
+
in_features=self.hidden_size,
|
807 |
+
out_features=2 * (self.intermediate_size + self.ssm_state_size) + self.num_heads,
|
808 |
+
bias=self.use_bias,
|
809 |
+
)
|
810 |
+
|
811 |
+
conv1d_dim = self.intermediate_size + 2 * self.ssm_state_size
|
812 |
+
self.conv1d = nn.Conv1d(
|
813 |
+
in_channels=conv1d_dim,
|
814 |
+
out_channels=conv1d_dim,
|
815 |
+
bias=config.use_conv_bias,
|
816 |
+
kernel_size=config.mamba2_conv_kernel,
|
817 |
+
groups=conv1d_dim,
|
818 |
+
padding=config.mamba2_conv_kernel - 1,
|
819 |
+
)
|
820 |
+
|
821 |
+
self.activation = config.hidden_act
|
822 |
+
self.act = ACT2FN[config.hidden_act]
|
823 |
+
|
824 |
+
# We only use a bias as parameter
|
825 |
+
self.dt_bias = nn.Parameter(torch.rand(size=(self.num_heads,)))
|
826 |
+
|
827 |
+
# Scalar initialization of A, i.e. 1-Semi-Separable Matrix of A (== 1-SS(a))
|
828 |
+
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(*config.A_initializer_range)
|
829 |
+
self.A_log = nn.Parameter(torch.log(A))
|
830 |
+
|
831 |
+
# As D is a skip connection with A, it is also a scalar of the same shape as A
|
832 |
+
self.D = nn.Parameter(torch.ones(self.num_heads))
|
833 |
+
|
834 |
+
# Residual normalization introduced for instability, see section 7 of the paper
|
835 |
+
self.norm = Mamba2RMSNorm(self.intermediate_size, eps=1e-5)
|
836 |
+
|
837 |
+
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
|
838 |
+
|
839 |
+
if not is_fast_path_available:
|
840 |
+
logger.warning_once(
|
841 |
+
"The fast path is not available because on of "
|
842 |
+
"`(selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, causal_conv1d_fn, causal_conv1d_update)`"
|
843 |
+
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
|
844 |
+
" https://github.com/Dao-AILab/causal-conv1d"
|
845 |
+
)
|
846 |
+
|
847 |
+
def triton_kernels_forward(self, hidden_states, cache):
|
848 |
+
# Managing cache state
|
849 |
+
if cache is not None:
|
850 |
+
cached_start = not cache.has_previous_state
|
851 |
+
cached_forward = not cached_start
|
852 |
+
else:
|
853 |
+
cached_start = False
|
854 |
+
cached_forward = False
|
855 |
+
|
856 |
+
# 1. Parallel projection for the input
|
857 |
+
zxbcdt = self.in_proj(hidden_states)
|
858 |
+
|
859 |
+
# 2-5. Training combined into one triton kernel
|
860 |
+
if self.training and cache is None:
|
861 |
+
y = mamba_split_conv1d_scan_combined(
|
862 |
+
zxbcdt=zxbcdt,
|
863 |
+
conv1d_weight=self.conv1d.weight.squeeze(1),
|
864 |
+
conv1d_bias=self.conv1d.bias,
|
865 |
+
dt_bias=self.dt_bias,
|
866 |
+
A=-torch.exp(self.A_log),
|
867 |
+
D=self.D,
|
868 |
+
chunk_size=self.chunk_size,
|
869 |
+
seq_idx=None,
|
870 |
+
activation=self.activation,
|
871 |
+
rmsnorm_weight=self.norm.weight,
|
872 |
+
rmsnorm_eps=self.norm.eps,
|
873 |
+
outproj_weight=self.out_proj.weight,
|
874 |
+
outproj_bias=self.out_proj.bias,
|
875 |
+
headdim=self.head_dim,
|
876 |
+
ngroups=1,
|
877 |
+
norm_before_gate=False,
|
878 |
+
dt_limit=(self.dt_min, self.dt_max),
|
879 |
+
initial_states=None,
|
880 |
+
return_final_states=False,
|
881 |
+
)
|
882 |
+
return y
|
883 |
+
|
884 |
+
# Reconstructing the necessary vars
|
885 |
+
d_mlp = (zxbcdt.shape[-1] - 2 * self.intermediate_size - 2 * self.ssm_state_size - self.num_heads) // 2
|
886 |
+
z0, x0, z, xBC, dt = torch.split(
|
887 |
+
zxbcdt,
|
888 |
+
[d_mlp, d_mlp, self.intermediate_size, self.intermediate_size + 2 * self.ssm_state_size, self.num_heads],
|
889 |
+
dim=-1,
|
890 |
+
)
|
891 |
+
|
892 |
+
# 2. Causal convolution for partial set of variables ("input" (x), B, C)
|
893 |
+
# Init cache with first "real" values
|
894 |
+
if cached_start:
|
895 |
+
xBC_t = xBC.transpose(1, 2)
|
896 |
+
cache.conv_states[self.layer_idx].copy_(F.pad(xBC_t, (self.conv_kernel_size - xBC_t.shape[-1], 0)))
|
897 |
+
|
898 |
+
if cached_forward:
|
899 |
+
xBC = causal_conv1d_update(
|
900 |
+
x=xBC.squeeze(1),
|
901 |
+
conv_state=cache.conv_states[self.layer_idx],
|
902 |
+
weight=self.conv1d.weight.squeeze(1),
|
903 |
+
bias=self.conv1d.bias,
|
904 |
+
activation=self.activation,
|
905 |
+
)
|
906 |
+
else:
|
907 |
+
xBC = causal_conv1d_fn(
|
908 |
+
x=xBC.transpose(1, 2),
|
909 |
+
weight=self.conv1d.weight.squeeze(1),
|
910 |
+
bias=self.conv1d.bias,
|
911 |
+
activation=self.activation,
|
912 |
+
).transpose(1, 2)
|
913 |
+
|
914 |
+
# Reconstruct causal convolution vars
|
915 |
+
x, B, C = torch.split(xBC, [self.intermediate_size, self.ssm_state_size, self.ssm_state_size], dim=-1)
|
916 |
+
|
917 |
+
# 3. State Space Duality (SSD)
|
918 |
+
# Discretize 1-SS(a)
|
919 |
+
A = -torch.exp(self.A_log.float()) # .float() to avoid infs/nans
|
920 |
+
|
921 |
+
if not cached_forward:
|
922 |
+
y = mamba_chunk_scan_combined(
|
923 |
+
x=x.reshape(x.shape[0], x.shape[1], -1, self.head_dim),
|
924 |
+
dt=dt,
|
925 |
+
A=A,
|
926 |
+
B=B.unsqueeze(-2),
|
927 |
+
C=C.unsqueeze(-2),
|
928 |
+
chunk_size=self.chunk_size,
|
929 |
+
D=self.D,
|
930 |
+
z=None,
|
931 |
+
initial_states=None,
|
932 |
+
dt_bias=self.dt_bias,
|
933 |
+
dt_softplus=True,
|
934 |
+
seq_idx=None,
|
935 |
+
dt_limit=(self.dt_min, self.dt_max),
|
936 |
+
return_final_states=cached_start,
|
937 |
+
)
|
938 |
+
|
939 |
+
if cached_start:
|
940 |
+
y, last_state = y
|
941 |
+
if cached_start:
|
942 |
+
cache.ssm_states[self.layer_idx].copy_(last_state)
|
943 |
+
|
944 |
+
# [bsz, seq_len, num_heads, head_dim] -> [bsz, seq_len, intermediate size]
|
945 |
+
y = y.reshape(y.shape[0], y.shape[1], -1)
|
946 |
+
else:
|
947 |
+
# Preparing values for single step
|
948 |
+
# [num_heads] -> [num_heads, head_dim, state_size]
|
949 |
+
A = (
|
950 |
+
A.unsqueeze(-1)
|
951 |
+
.unsqueeze(-1)
|
952 |
+
.expand(A.shape[0], self.head_dim, self.ssm_state_size)
|
953 |
+
.to(dtype=torch.float32)
|
954 |
+
)
|
955 |
+
# [bsz, 1, num_heads] -> [bsz, num_heads, head_dim]
|
956 |
+
dt = dt.transpose(1, 2).expand(dt.shape[0], dt.shape[-1], self.head_dim)
|
957 |
+
# [num_heads] -> [num_heads, head_dim]
|
958 |
+
dt_bias = self.dt_bias.unsqueeze(-1).expand(self.dt_bias.shape[0], self.head_dim)
|
959 |
+
# [num_heads] -> [num_heads, head_dim]
|
960 |
+
D = self.D.unsqueeze(-1).expand(self.D.shape[0], self.head_dim)
|
961 |
+
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
962 |
+
x_reshaped = x.reshape(x.shape[0], -1, self.head_dim)
|
963 |
+
|
964 |
+
# Triton kernel for updating states in-place and returning the hidden state
|
965 |
+
y = selective_state_update(
|
966 |
+
state=cache.ssm_states[self.layer_idx],
|
967 |
+
x=x_reshaped,
|
968 |
+
dt=dt,
|
969 |
+
A=A,
|
970 |
+
B=B,
|
971 |
+
C=C,
|
972 |
+
D=D,
|
973 |
+
z=None,
|
974 |
+
dt_bias=dt_bias,
|
975 |
+
dt_softplus=True,
|
976 |
+
)
|
977 |
+
|
978 |
+
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
979 |
+
y = y.reshape(y.shape[0], -1).unsqueeze(1)
|
980 |
+
|
981 |
+
# 4. Gate normalization introduced for instability, see section 7 of the paper
|
982 |
+
y = self.norm(y, residual=z)
|
983 |
+
if d_mlp > 0:
|
984 |
+
y = torch.cat([self.act(z0) * x0, y], dim=-1)
|
985 |
+
|
986 |
+
# 5. Out projecting
|
987 |
+
y = self.out_proj(y)
|
988 |
+
|
989 |
+
return y
|
990 |
+
|
991 |
+
@classmethod
|
992 |
+
def _ssd_naive(
|
993 |
+
cls, x, dt, A, B, C, D, chunk_size, dt_bias, dt_min, dt_max, initial_states=None, return_final_states=False
|
994 |
+
):
|
995 |
+
"""
|
996 |
+
Arguments:
|
997 |
+
x: (batch_size, seq_len, num_heads, head_dim)
|
998 |
+
dt: (batch_size, seq_len, num_heads)
|
999 |
+
A: (num_heads)
|
1000 |
+
B: (batch_size, seq_len, num_heads, ssm_state_size)
|
1001 |
+
C: (batch_size, seq_len, num_heads, ssm_state_size)
|
1002 |
+
D: (num_heads)
|
1003 |
+
dt_bias: (num_heads)
|
1004 |
+
Return:
|
1005 |
+
y: (batch_size, seq_len, num_heads, head_dim)
|
1006 |
+
"""
|
1007 |
+
|
1008 |
+
def pad_by_size(x, pad_size):
|
1009 |
+
"""
|
1010 |
+
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
1011 |
+
|
1012 |
+
Assumes that we only have tensors of either size 4 or 3
|
1013 |
+
"""
|
1014 |
+
assert 2 < len(x.shape) < 5
|
1015 |
+
|
1016 |
+
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(x.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
|
1017 |
+
|
1018 |
+
return F.pad(x, pad_shape, mode="constant", value=0)
|
1019 |
+
|
1020 |
+
def reshape_into_chunks(x, pad_size, chunk_size):
|
1021 |
+
"""
|
1022 |
+
Padding x tensor with `pad_size` on the seq_len dim (dim=1) and
|
1023 |
+
simultaneously splitting it into chunk sequences.
|
1024 |
+
|
1025 |
+
Assumes that we only have tensors of either size 4 or 3
|
1026 |
+
"""
|
1027 |
+
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
|
1028 |
+
x = pad_by_size(x, pad_size)
|
1029 |
+
|
1030 |
+
if len(x.shape) == 3:
|
1031 |
+
# b (l c) h -> b l c h with c=chunk_size
|
1032 |
+
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
|
1033 |
+
return x.reshape(x.shape[0], -1, chunk_size, x.shape[2])
|
1034 |
+
else:
|
1035 |
+
# b (l c) h p -> b l c h p with c=chunk_size
|
1036 |
+
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
|
1037 |
+
return x.reshape(x.shape[0], -1, chunk_size, x.shape[2], x.shape[3])
|
1038 |
+
|
1039 |
+
def segsum(x):
|
1040 |
+
"""
|
1041 |
+
More stable segment sum calculation
|
1042 |
+
"""
|
1043 |
+
T = x.size(-1)
|
1044 |
+
# [..., chunk_size] -> [..., chunk_size, chunk_size]
|
1045 |
+
x = x.unsqueeze(-1).expand(*x.size(), T)
|
1046 |
+
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=-1)
|
1047 |
+
x = x.masked_fill(~mask, 0)
|
1048 |
+
x_segsum = torch.cumsum(x, dim=-2)
|
1049 |
+
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=0)
|
1050 |
+
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
|
1051 |
+
return x_segsum
|
1052 |
+
|
1053 |
+
# Since it is parallelized by chunks they have to be of the same size which we ensure by padding
|
1054 |
+
seq_len = x.shape[1]
|
1055 |
+
pad_size = chunk_size - (seq_len % chunk_size)
|
1056 |
+
|
1057 |
+
# dt softplus and clamping
|
1058 |
+
dt = F.softplus(dt + dt_bias)
|
1059 |
+
dt = torch.clamp(dt, dt_min, dt_max)
|
1060 |
+
|
1061 |
+
D_residual = D.unsqueeze(-1) * pad_by_size(x, pad_size)
|
1062 |
+
|
1063 |
+
# Discretize x and A
|
1064 |
+
x = x * dt.unsqueeze(-1)
|
1065 |
+
A = A.to(x.dtype) * dt
|
1066 |
+
|
1067 |
+
# Rearrange into blocks/chunks
|
1068 |
+
x, A, B, C = [reshape_into_chunks(t, pad_size, chunk_size) for t in (x, A, B, C)]
|
1069 |
+
|
1070 |
+
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
1071 |
+
A = A.permute(0, 3, 1, 2)
|
1072 |
+
A_cumsum = torch.cumsum(A, dim=-1)
|
1073 |
+
|
1074 |
+
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
1075 |
+
L = torch.exp(segsum(A))
|
1076 |
+
Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, L, x)
|
1077 |
+
|
1078 |
+
# 2. Compute the state for each intra-chunk
|
1079 |
+
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
1080 |
+
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
1081 |
+
states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, x)
|
1082 |
+
|
1083 |
+
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
|
1084 |
+
# (middle term of factorization of off-diag blocks; A terms)
|
1085 |
+
if initial_states is None:
|
1086 |
+
initial_states = torch.zeros_like(states[:, :1])
|
1087 |
+
states = torch.cat([initial_states, states], dim=1)
|
1088 |
+
decay_chunk = torch.exp(segsum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
1089 |
+
new_states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
|
1090 |
+
states, final_state = new_states[:, :-1], new_states[:, -1]
|
1091 |
+
|
1092 |
+
# 4. Compute state -> output conversion per chunk
|
1093 |
+
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
1094 |
+
state_decay_out = torch.exp(A_cumsum)
|
1095 |
+
Y_off = torch.einsum("bclhn,bchpn,bhcl->bclhp", C, states, state_decay_out)
|
1096 |
+
|
1097 |
+
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
1098 |
+
y = Y_diag + Y_off
|
1099 |
+
# [bsz, -1, chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
1100 |
+
y = y.reshape(y.shape[0], -1, y.shape[-2], y.shape[-1])
|
1101 |
+
|
1102 |
+
# Add D residual to final output
|
1103 |
+
y = y + D_residual
|
1104 |
+
|
1105 |
+
# Cutting off padded chunks
|
1106 |
+
if pad_size > 0:
|
1107 |
+
y = y[:, :seq_len, :, :]
|
1108 |
+
|
1109 |
+
if not return_final_states:
|
1110 |
+
return y
|
1111 |
+
else:
|
1112 |
+
return y, final_state
|
1113 |
+
|
1114 |
+
def slow_forward(self, hidden_states, cache):
|
1115 |
+
seq_len = hidden_states.shape[1]
|
1116 |
+
|
1117 |
+
# Managing cache state
|
1118 |
+
if cache is not None:
|
1119 |
+
cached_start = not cache.has_previous_state
|
1120 |
+
cached_forward = not cached_start
|
1121 |
+
else:
|
1122 |
+
cached_start = False
|
1123 |
+
cached_forward = False
|
1124 |
+
|
1125 |
+
# 1. Parallel projection for the input
|
1126 |
+
zxbcdt = self.in_proj(hidden_states)
|
1127 |
+
|
1128 |
+
# Reconstructing the necessary vars
|
1129 |
+
d_mlp = (zxbcdt.shape[-1] - 2 * self.intermediate_size - 2 * self.ssm_state_size - self.num_heads) // 2
|
1130 |
+
z0, x0, z, xBC, dt = torch.split(
|
1131 |
+
zxbcdt,
|
1132 |
+
[d_mlp, d_mlp, self.intermediate_size, self.intermediate_size + 2 * self.ssm_state_size, self.num_heads],
|
1133 |
+
dim=-1,
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
# 2. Causal convolution for partial set of variables ("input" (x), B, C)
|
1137 |
+
# Init cache with first "real" values
|
1138 |
+
if cached_start:
|
1139 |
+
xBC_t = xBC.transpose(1, 2)
|
1140 |
+
cache.conv_states[self.layer_idx].copy_(F.pad(xBC_t, (self.conv_kernel_size - xBC_t.shape[-1], 0)))
|
1141 |
+
|
1142 |
+
if cached_forward:
|
1143 |
+
cache.conv_states[self.layer_idx].copy_(torch.roll(cache.conv_states[self.layer_idx], shifts=-1, dims=-1))
|
1144 |
+
cache.conv_states[self.layer_idx][:, :, -1] = xBC.squeeze(1)
|
1145 |
+
xBC = torch.sum(cache.conv_states[self.layer_idx] * self.conv1d.weight.squeeze(1), dim=-1)
|
1146 |
+
if self.conv1d.bias is not None:
|
1147 |
+
xBC = xBC + self.conv1d.bias
|
1148 |
+
xBC = self.act(xBC)
|
1149 |
+
else:
|
1150 |
+
xBC = self.act(self.conv1d(xBC.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
1151 |
+
|
1152 |
+
# Reconstruct causal convolution vars
|
1153 |
+
x, B, C = torch.split(xBC, [self.intermediate_size, self.ssm_state_size, self.ssm_state_size], dim=-1)
|
1154 |
+
|
1155 |
+
# 3. State Space Duality (SSD)
|
1156 |
+
# Discretize 1-SS(a)
|
1157 |
+
A = -torch.exp(self.A_log.float()) # .float() to avoid infs/nans
|
1158 |
+
|
1159 |
+
if not cached_forward:
|
1160 |
+
y = self._ssd_naive(
|
1161 |
+
# [bsz, seq_len, intermediate_size] -> [bsz, seq_len, num_heads, head_dim]
|
1162 |
+
x=x.reshape(x.shape[0], x.shape[1], -1, self.head_dim),
|
1163 |
+
dt=dt,
|
1164 |
+
A=A,
|
1165 |
+
# [bsz, seq_len, state_size] -> [bsz, seq_len, num_groups=1, state_size]
|
1166 |
+
B=B.unsqueeze(-2),
|
1167 |
+
# [bsz, seq_len, state_size] -> [bsz, seq_len, num_groups=1, state_size]
|
1168 |
+
C=C.unsqueeze(-2),
|
1169 |
+
chunk_size=self.chunk_size,
|
1170 |
+
D=self.D,
|
1171 |
+
initial_states=None,
|
1172 |
+
dt_bias=self.dt_bias,
|
1173 |
+
dt_min=self.dt_min,
|
1174 |
+
dt_max=self.dt_max,
|
1175 |
+
return_final_states=cached_start,
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
if cached_start:
|
1179 |
+
y, last_state = y
|
1180 |
+
if cached_start:
|
1181 |
+
cache.ssm_states[self.layer_idx].copy_(last_state)
|
1182 |
+
|
1183 |
+
# [bsz, seq_len, num_heads, head_dim] -> [bsz, seq_len, intermediate_size]
|
1184 |
+
y = y.reshape(y.shape[0], y.shape[1], -1)
|
1185 |
+
else:
|
1186 |
+
# Get time step with softplus and bias
|
1187 |
+
dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype))
|
1188 |
+
dt = dt.squeeze(1)
|
1189 |
+
|
1190 |
+
# Discretize A
|
1191 |
+
dA = torch.exp(dt * A)
|
1192 |
+
|
1193 |
+
# Discretize B and x
|
1194 |
+
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
1195 |
+
x = x.reshape(x.shape[0], -1, self.head_dim)
|
1196 |
+
dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)
|
1197 |
+
|
1198 |
+
# State calculation
|
1199 |
+
cache.ssm_states[self.layer_idx].copy_(
|
1200 |
+
cache.ssm_states[self.layer_idx] * dA.unsqueeze(-1).unsqueeze(-1) + dBx
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
# Subsequent output
|
1204 |
+
y = torch.einsum("bhpn,bn->bhp", cache.ssm_states[self.layer_idx].to(C.dtype), C)
|
1205 |
+
|
1206 |
+
# D skip connection
|
1207 |
+
y = y + self.D.unsqueeze(-1) * x
|
1208 |
+
|
1209 |
+
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
1210 |
+
y = y.reshape(y.shape[0], -1).unsqueeze(1)
|
1211 |
+
|
1212 |
+
# 4. Gate normalization introduced for instability, see section 7 of the paper
|
1213 |
+
y = self.norm(y, residual=z)
|
1214 |
+
if d_mlp > 0:
|
1215 |
+
y = torch.cat([self.act(z0) * x0, y], dim=-1)
|
1216 |
+
|
1217 |
+
# 5. Out projecting
|
1218 |
+
y = self.out_proj(y)
|
1219 |
+
|
1220 |
+
return y
|
1221 |
+
|
1222 |
+
def forward(self, hidden_states, cache: Optional[HybridMamba2AttentionDynamicCache] = None):
|
1223 |
+
# TODO: check version for AMD support?
|
1224 |
+
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
|
1225 |
+
return self.triton_kernels_forward(hidden_states, cache)
|
1226 |
+
return self.slow_forward(hidden_states, cache)
|
1227 |
+
|
1228 |
+
|
1229 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mamba2
|
1230 |
+
# An optional residual normalization has been integrated
|
1231 |
+
class Mamba2RMSNorm(nn.Module):
|
1232 |
+
def __init__(self, hidden_size, eps=1e-6):
|
1233 |
+
"""
|
1234 |
+
Mamba2RMSNorm is equivalent to LlamaRMSNorm but with optional residual normalizing
|
1235 |
+
"""
|
1236 |
+
super().__init__()
|
1237 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
1238 |
+
self.eps = eps
|
1239 |
+
|
1240 |
+
def forward(self, hidden_states, residual=None):
|
1241 |
+
input_dtype = hidden_states.dtype
|
1242 |
+
hidden_states = hidden_states.to(torch.float32)
|
1243 |
+
|
1244 |
+
# Residual normalization introduced for instability, see section 7 of the paper
|
1245 |
+
if residual is not None:
|
1246 |
+
hidden_states = hidden_states * F.silu(residual.to(torch.float32))
|
1247 |
+
|
1248 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
1249 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
1250 |
+
|
1251 |
+
return self.weight * hidden_states.to(input_dtype)
|
1252 |
+
|
1253 |
+
|
1254 |
+
# Adapted from transformers.models.mamba.modeling_mamba.MambaBlock
|
1255 |
+
# Allows attention instead of mamba2 and an optional MLP layer afterward
|
1256 |
+
class Mamba2Block(nn.Module):
|
1257 |
+
def __init__(self, config, layer_idx):
|
1258 |
+
super().__init__()
|
1259 |
+
self.config = config
|
1260 |
+
self.layer_idx = layer_idx
|
1261 |
+
self.attention_layer = layer_idx in config.attention_layers_idx
|
1262 |
+
self.mlp_layer = config.mlp_intermediate_size > 0
|
1263 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
1264 |
+
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
1265 |
+
|
1266 |
+
# Mixer is either attention layer or mamba2 layer
|
1267 |
+
if self.attention_layer:
|
1268 |
+
self.mixer = MAMBA2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
1269 |
+
else:
|
1270 |
+
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
|
1271 |
+
|
1272 |
+
# Following mlp layer is optional
|
1273 |
+
if self.mlp_layer:
|
1274 |
+
self.norm2 = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
1275 |
+
self.mlp = Mamba2MLP(config, layer_idx=layer_idx)
|
1276 |
+
else:
|
1277 |
+
self.norm2 = None
|
1278 |
+
self.mlp = None
|
1279 |
+
|
1280 |
+
def forward(
|
1281 |
+
self,
|
1282 |
+
hidden_states: torch.FloatTensor,
|
1283 |
+
attention_mask: torch.FloatTensor,
|
1284 |
+
position_ids: torch.LongTensor,
|
1285 |
+
cache: Optional[HybridMamba2AttentionDynamicCache] = None,
|
1286 |
+
output_attentions: Optional[bool] = False,
|
1287 |
+
use_cache: Optional[bool] = False,
|
1288 |
+
):
|
1289 |
+
dtype = hidden_states.dtype
|
1290 |
+
|
1291 |
+
residual = hidden_states
|
1292 |
+
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
1293 |
+
if self.residual_in_fp32:
|
1294 |
+
residual = residual.to(torch.float32)
|
1295 |
+
|
1296 |
+
# Mamba2 path
|
1297 |
+
if not self.attention_layer:
|
1298 |
+
hidden_states = self.mixer(hidden_states, cache=cache)
|
1299 |
+
attn_weights = None
|
1300 |
+
# Attention path
|
1301 |
+
else:
|
1302 |
+
hidden_states, attn_weights = self.mixer(
|
1303 |
+
hidden_states=hidden_states,
|
1304 |
+
attention_mask=attention_mask,
|
1305 |
+
position_ids=position_ids,
|
1306 |
+
cache=cache,
|
1307 |
+
output_attentions=output_attentions,
|
1308 |
+
use_cache=use_cache,
|
1309 |
+
)
|
1310 |
+
hidden_states = (residual + hidden_states).to(dtype)
|
1311 |
+
|
1312 |
+
if self.mlp_layer:
|
1313 |
+
residual = hidden_states
|
1314 |
+
hidden_states = self.norm2(hidden_states.to(dtype=self.norm2.weight.dtype))
|
1315 |
+
if self.residual_in_fp32:
|
1316 |
+
residual = residual.to(torch.float32)
|
1317 |
+
|
1318 |
+
hidden_states = self.mlp(hidden_states)
|
1319 |
+
hidden_states = (hidden_states + residual).to(dtype)
|
1320 |
+
|
1321 |
+
return hidden_states, attn_weights
|
1322 |
+
|
1323 |
+
|
1324 |
+
class Mamba2PreTrainedModel(PreTrainedModel):
|
1325 |
+
"""
|
1326 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1327 |
+
models.
|
1328 |
+
"""
|
1329 |
+
|
1330 |
+
config_class = Mamba2Config
|
1331 |
+
base_model_prefix = "backbone"
|
1332 |
+
_no_split_modules = ["Mamba2Block"]
|
1333 |
+
supports_gradient_checkpointing = True
|
1334 |
+
_skip_keys_device_placement = "past_key_values"
|
1335 |
+
_supports_flash_attn_2 = True
|
1336 |
+
_supports_sdpa = True
|
1337 |
+
_supports_cache_class = True # Note: only supports HybridMamba2AttentionDynamicCache
|
1338 |
+
_is_stateful = True
|
1339 |
+
|
1340 |
+
# Adapted from transformers.models.mamba.modeling_mamba.MambaPreTrainedModel._init_weights
|
1341 |
+
# Only using dt bias and rescale_prenorm_residual is expanded when using the additional MLP layer
|
1342 |
+
def _init_weights(self, module):
|
1343 |
+
"""Initialize the weights."""
|
1344 |
+
if isinstance(module, Mamba2Mixer):
|
1345 |
+
module.A_log._no_weight_decay = True
|
1346 |
+
module.D._no_weight_decay = True
|
1347 |
+
|
1348 |
+
dt = torch.exp(
|
1349 |
+
torch.rand(self.config.mamba2_num_heads)
|
1350 |
+
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
1351 |
+
+ math.log(self.config.time_step_min)
|
1352 |
+
).clamp(min=self.config.time_step_floor)
|
1353 |
+
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
1354 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
1355 |
+
with torch.no_grad():
|
1356 |
+
module.dt_bias.copy_(inv_dt)
|
1357 |
+
module.dt_bias._no_reinit = True
|
1358 |
+
module.dt_bias._no_weight_decay = True
|
1359 |
+
|
1360 |
+
if isinstance(module, nn.Linear):
|
1361 |
+
if module.bias is not None:
|
1362 |
+
if not getattr(module.bias, "_no_reinit", False):
|
1363 |
+
nn.init.zeros_(module.bias)
|
1364 |
+
elif isinstance(module, nn.Embedding):
|
1365 |
+
nn.init.normal_(module.weight, std=self.config.emb_initializer_range)
|
1366 |
+
elif isinstance(module, nn.Conv1d):
|
1367 |
+
if self.config.conv_initializer_range is not None:
|
1368 |
+
nn.init.uniform_(
|
1369 |
+
module.weight, -self.config.conv_initializer_range, self.config.conv_initializer_range
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
if self.config.rescale_prenorm_residual:
|
1373 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
1374 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
1375 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
1376 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
1377 |
+
#
|
1378 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
1379 |
+
for name, p in module.named_parameters():
|
1380 |
+
if name in ["out_proj.weight", "fc2.weight"]:
|
1381 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
1382 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
1383 |
+
# We need to reinit p since this code could be called multiple times
|
1384 |
+
# Having just p *= scale would repeatedly scale it down
|
1385 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
1386 |
+
|
1387 |
+
# mlp layer is considered as an additional overhead
|
1388 |
+
n_residuals = 2 if self.config.mlp_intermediate_size > 0 else 1
|
1389 |
+
with torch.no_grad():
|
1390 |
+
p /= math.sqrt(n_residuals * self.config.num_hidden_layers)
|
1391 |
+
|
1392 |
+
|
1393 |
+
MAMBA2_START_DOCSTRING = r"""
|
1394 |
+
|
1395 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1396 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1397 |
+
etc.)
|
1398 |
+
|
1399 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1400 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1401 |
+
and behavior.
|
1402 |
+
|
1403 |
+
Parameters:
|
1404 |
+
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
|
1405 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1406 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1407 |
+
"""
|
1408 |
+
|
1409 |
+
MAMBA2_INPUTS_DOCSTRING = r"""
|
1410 |
+
Args:
|
1411 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1412 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1413 |
+
it.
|
1414 |
+
|
1415 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1416 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1417 |
+
|
1418 |
+
[What are input IDs?](../glossary#input-ids)
|
1419 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1420 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1421 |
+
|
1422 |
+
- 1 for tokens that are **not masked**,
|
1423 |
+
- 0 for tokens that are **masked**.
|
1424 |
+
|
1425 |
+
[What are attention masks?](../glossary#attention-mask)
|
1426 |
+
|
1427 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1428 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1429 |
+
|
1430 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1431 |
+
`past_key_values`).
|
1432 |
+
|
1433 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1434 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1435 |
+
information on the default strategy.
|
1436 |
+
|
1437 |
+
- 1 indicates the head is **not masked**,
|
1438 |
+
- 0 indicates the head is **masked**.
|
1439 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1440 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1441 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1442 |
+
model's internal embedding lookup matrix.
|
1443 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1444 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1445 |
+
config.n_positions - 1]`.
|
1446 |
+
|
1447 |
+
[What are position IDs?](../glossary#position-ids)
|
1448 |
+
past_key_values (`HybridMamba2AttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1449 |
+
A HybridMamba2AttentionDynamicCache object containing pre-computed hidden-states (keys, values, and, if used, the convolution in the
|
1450 |
+
self-attention blocks and convolution and ssm states in the mamba2 blocks) that can be used (see `past_key_values` input)
|
1451 |
+
to speed up sequential decoding.
|
1452 |
+
Key and value cache tensors have shape `(batch_size, num_key_value_heads, seq_len, attention_head_dim)`.
|
1453 |
+
Convolution and ssm states tensors have shape `(batch_size, intermediate_size + 2 * state_size, mamba2_conv_kernel)` if used in the mamba2 block
|
1454 |
+
else it has shape `(batch_size, attention_head_dim * (num_attention_heads + 2 * num_key_value_heads), attention_conv_kernel)`
|
1455 |
+
and `(batch_size, mamba2_num_heads, mamba2_head_dim, state_size)` respectively.
|
1456 |
+
See the `HybridMamba2AttentionDynamicCache` class for more details.
|
1457 |
+
|
1458 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
|
1459 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1460 |
+
`input_ids` of shape `(batch_size, sequence_length)`.
|
1461 |
+
use_cache (`bool`, *optional*):
|
1462 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1463 |
+
`past_key_values`).
|
1464 |
+
output_attentions (`bool`, *optional*):
|
1465 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1466 |
+
tensors for more detail.
|
1467 |
+
output_hidden_states (`bool`, *optional*):
|
1468 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1469 |
+
more detail.
|
1470 |
+
return_dict (`bool`, *optional*):
|
1471 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1472 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1473 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1474 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1475 |
+
the complete sequence length.
|
1476 |
+
"""
|
1477 |
+
|
1478 |
+
|
1479 |
+
@add_start_docstrings(
|
1480 |
+
"The bare MAMBA2 Model outputting raw hidden-states without any specific head on top.",
|
1481 |
+
MAMBA2_START_DOCSTRING,
|
1482 |
+
)
|
1483 |
+
class Mamba2Model(Mamba2PreTrainedModel):
|
1484 |
+
# Adapted from transformers.models.mamba.modeling_mamba.MambaModel.__init__ with Mamba->Mamba2
|
1485 |
+
# Additional information about possible attention layers
|
1486 |
+
def __init__(self, config):
|
1487 |
+
super().__init__(config)
|
1488 |
+
|
1489 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
1490 |
+
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
1491 |
+
|
1492 |
+
self._attn_implementation = config._attn_implementation
|
1493 |
+
self._uses_attention_layers = len(config.attention_layers_idx) > 0
|
1494 |
+
|
1495 |
+
self.gradient_checkpointing = False
|
1496 |
+
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
1497 |
+
# Initialize weights and apply final processing
|
1498 |
+
self._register_load_state_dict_pre_hook(self.load_hook)
|
1499 |
+
self.post_init()
|
1500 |
+
|
1501 |
+
# Copied from transformers.models.mamba.modeling_mamba.MambaModel.load_hook
|
1502 |
+
def load_hook(self, state_dict, prefix, *args):
|
1503 |
+
for k in state_dict:
|
1504 |
+
if "embedding." in k:
|
1505 |
+
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
1506 |
+
break
|
1507 |
+
|
1508 |
+
def get_input_embeddings(self):
|
1509 |
+
return self.embeddings
|
1510 |
+
|
1511 |
+
def set_input_embeddings(self, new_embeddings):
|
1512 |
+
self.embeddings = new_embeddings
|
1513 |
+
|
1514 |
+
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
1515 |
+
@add_code_sample_docstrings(
|
1516 |
+
output_type=BaseModelOutputWithPast,
|
1517 |
+
config_class=_CONFIG_FOR_DOC,
|
1518 |
+
)
|
1519 |
+
# Adapted from transformers.models.jamba.modeling_jamba.JambaModel.forward
|
1520 |
+
# No MoE logic, inits cache itself like Mamba does, and handles position_ids like Llama
|
1521 |
+
def forward(
|
1522 |
+
self,
|
1523 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1524 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1525 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1526 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1527 |
+
past_key_values: Optional[HybridMamba2AttentionDynamicCache] = None,
|
1528 |
+
use_cache: Optional[bool] = None,
|
1529 |
+
output_attentions: Optional[bool] = None,
|
1530 |
+
output_hidden_states: Optional[bool] = None,
|
1531 |
+
return_dict: Optional[bool] = None,
|
1532 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1533 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1534 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1535 |
+
output_hidden_states = (
|
1536 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1537 |
+
)
|
1538 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
1539 |
+
|
1540 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1541 |
+
|
1542 |
+
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
1543 |
+
raise ValueError(
|
1544 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1545 |
+
)
|
1546 |
+
|
1547 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1548 |
+
logger.warning_once(
|
1549 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1550 |
+
)
|
1551 |
+
use_cache = False
|
1552 |
+
|
1553 |
+
if inputs_embeds is None:
|
1554 |
+
inputs_embeds = self.embeddings(input_ids)
|
1555 |
+
hidden_states = inputs_embeds
|
1556 |
+
|
1557 |
+
# We allow empty caches on initial forward
|
1558 |
+
if past_key_values is None and use_cache:
|
1559 |
+
past_key_values = HybridMamba2AttentionDynamicCache(
|
1560 |
+
config=self.config,
|
1561 |
+
batch_size=inputs_embeds.shape[0],
|
1562 |
+
device=inputs_embeds.device,
|
1563 |
+
dtype=inputs_embeds.dtype,
|
1564 |
+
)
|
1565 |
+
|
1566 |
+
# LLama based positions
|
1567 |
+
if cache_position is None:
|
1568 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1569 |
+
cache_position = torch.arange(
|
1570 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1571 |
+
)
|
1572 |
+
if position_ids is None:
|
1573 |
+
position_ids = cache_position.unsqueeze(0)
|
1574 |
+
|
1575 |
+
causal_mask = self._update_causal_mask(
|
1576 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1577 |
+
)
|
1578 |
+
|
1579 |
+
all_hidden_states = () if output_hidden_states else None
|
1580 |
+
all_self_attns = () if output_attentions else None
|
1581 |
+
|
1582 |
+
for mixer_block in self.layers:
|
1583 |
+
if output_hidden_states:
|
1584 |
+
all_hidden_states += (hidden_states,)
|
1585 |
+
|
1586 |
+
if self.gradient_checkpointing and self.training:
|
1587 |
+
out = self._gradient_checkpointing_func(
|
1588 |
+
mixer_block.__call__,
|
1589 |
+
hidden_states,
|
1590 |
+
causal_mask,
|
1591 |
+
position_ids,
|
1592 |
+
past_key_values,
|
1593 |
+
output_attentions,
|
1594 |
+
use_cache,
|
1595 |
+
)
|
1596 |
+
else:
|
1597 |
+
out = mixer_block(
|
1598 |
+
hidden_states=hidden_states,
|
1599 |
+
attention_mask=causal_mask,
|
1600 |
+
position_ids=position_ids,
|
1601 |
+
cache=past_key_values,
|
1602 |
+
output_attentions=output_attentions,
|
1603 |
+
use_cache=use_cache,
|
1604 |
+
)
|
1605 |
+
|
1606 |
+
hidden_states = out[0]
|
1607 |
+
|
1608 |
+
if output_attentions:
|
1609 |
+
if out[1] is not None:
|
1610 |
+
# Append attentions only of attention layers. Mamba2 layers return `None` as the attention weights
|
1611 |
+
all_self_attns += (out[1],)
|
1612 |
+
|
1613 |
+
hidden_states = self.norm_f(hidden_states)
|
1614 |
+
|
1615 |
+
# Add hidden states from the last block
|
1616 |
+
if output_hidden_states:
|
1617 |
+
all_hidden_states += (hidden_states,)
|
1618 |
+
|
1619 |
+
if past_key_values and not past_key_values.has_previous_state:
|
1620 |
+
past_key_values.has_previous_state = True
|
1621 |
+
|
1622 |
+
next_cache = None if not use_cache else past_key_values
|
1623 |
+
|
1624 |
+
if not return_dict:
|
1625 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1626 |
+
|
1627 |
+
return BaseModelOutputWithPast(
|
1628 |
+
last_hidden_state=hidden_states,
|
1629 |
+
past_key_values=next_cache,
|
1630 |
+
hidden_states=all_hidden_states,
|
1631 |
+
attentions=all_self_attns,
|
1632 |
+
)
|
1633 |
+
|
1634 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
1635 |
+
# Custom hybrid cache instead
|
1636 |
+
def _update_causal_mask(
|
1637 |
+
self,
|
1638 |
+
attention_mask: torch.Tensor,
|
1639 |
+
input_tensor: torch.Tensor,
|
1640 |
+
cache_position: torch.Tensor,
|
1641 |
+
past_key_values: HybridMamba2AttentionDynamicCache,
|
1642 |
+
output_attentions: bool,
|
1643 |
+
):
|
1644 |
+
if not self._uses_attention_layers:
|
1645 |
+
return None
|
1646 |
+
|
1647 |
+
if self._attn_implementation == "flash_attention_2":
|
1648 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1649 |
+
return attention_mask
|
1650 |
+
return None
|
1651 |
+
|
1652 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1653 |
+
# order to dispatch on Flash Attention 2.
|
1654 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1655 |
+
|
1656 |
+
# TODO: check if this is compatible with this custom cache format
|
1657 |
+
if self._attn_implementation == "sdpa" and not output_attentions:
|
1658 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1659 |
+
attention_mask,
|
1660 |
+
inputs_embeds=input_tensor,
|
1661 |
+
past_key_values_length=past_seen_tokens,
|
1662 |
+
is_training=self.training,
|
1663 |
+
):
|
1664 |
+
return None
|
1665 |
+
|
1666 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1667 |
+
min_dtype = torch.finfo(dtype).min
|
1668 |
+
sequence_length = input_tensor.shape[1]
|
1669 |
+
target_length = (
|
1670 |
+
attention_mask.shape[-1]
|
1671 |
+
if isinstance(attention_mask, torch.Tensor)
|
1672 |
+
else past_seen_tokens + sequence_length
|
1673 |
+
)
|
1674 |
+
|
1675 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1676 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1677 |
+
if attention_mask.max() != 0:
|
1678 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
1679 |
+
causal_mask = attention_mask
|
1680 |
+
else:
|
1681 |
+
causal_mask = torch.full(
|
1682 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1683 |
+
)
|
1684 |
+
if sequence_length != 1:
|
1685 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1686 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1687 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1688 |
+
if attention_mask is not None:
|
1689 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1690 |
+
mask_length = attention_mask.shape[-1]
|
1691 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1692 |
+
padding_mask = padding_mask == 0
|
1693 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1694 |
+
padding_mask, min_dtype
|
1695 |
+
)
|
1696 |
+
if (
|
1697 |
+
self._attn_implementation == "sdpa"
|
1698 |
+
and attention_mask is not None
|
1699 |
+
and attention_mask.device.type == "cuda"
|
1700 |
+
and not output_attentions
|
1701 |
+
):
|
1702 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1703 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1704 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1705 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1706 |
+
|
1707 |
+
return causal_mask
|
1708 |
+
|
1709 |
+
|
1710 |
+
@add_start_docstrings(
|
1711 |
+
"""
|
1712 |
+
The MAMBA2 Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
|
1713 |
+
""",
|
1714 |
+
MAMBA2_START_DOCSTRING,
|
1715 |
+
)
|
1716 |
+
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
|
1717 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1718 |
+
|
1719 |
+
def __init__(self, config):
|
1720 |
+
super().__init__(config)
|
1721 |
+
self.backbone = Mamba2Model(config)
|
1722 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1723 |
+
|
1724 |
+
# Initialize weights and apply final processing
|
1725 |
+
self.post_init()
|
1726 |
+
|
1727 |
+
def get_output_embeddings(self):
|
1728 |
+
return self.lm_head
|
1729 |
+
|
1730 |
+
def set_output_embeddings(self, new_embeddings):
|
1731 |
+
self.lm_head = new_embeddings
|
1732 |
+
|
1733 |
+
def get_input_embeddings(self):
|
1734 |
+
return self.backbone.get_input_embeddings()
|
1735 |
+
|
1736 |
+
def set_input_embeddings(self, new_embeddings):
|
1737 |
+
return self.backbone.set_input_embeddings(new_embeddings)
|
1738 |
+
|
1739 |
+
# Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM.prepare_inputs_for_generation
|
1740 |
+
# We omit some args Mamba2 doesn't use such as output_router_logits and num_logits_to_keep; additional optional reinit of the cache
|
1741 |
+
def prepare_inputs_for_generation(
|
1742 |
+
self,
|
1743 |
+
input_ids,
|
1744 |
+
past_key_values=None,
|
1745 |
+
attention_mask=None,
|
1746 |
+
inputs_embeds=None,
|
1747 |
+
cache_position=None,
|
1748 |
+
position_ids=None,
|
1749 |
+
use_cache=True,
|
1750 |
+
**kwargs,
|
1751 |
+
):
|
1752 |
+
empty_past_kv = past_key_values is None
|
1753 |
+
|
1754 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1755 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1756 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1757 |
+
if not empty_past_kv:
|
1758 |
+
if inputs_embeds is not None: # Exception 1
|
1759 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1760 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1761 |
+
input_ids = input_ids[:, cache_position]
|
1762 |
+
|
1763 |
+
# Initialize cache, if necessary
|
1764 |
+
if empty_past_kv:
|
1765 |
+
past_key_values = HybridMamba2AttentionDynamicCache(
|
1766 |
+
config=self.config,
|
1767 |
+
batch_size=input_ids.shape[0],
|
1768 |
+
device=self.device,
|
1769 |
+
dtype=self.dtype,
|
1770 |
+
)
|
1771 |
+
|
1772 |
+
if attention_mask is not None and position_ids is None:
|
1773 |
+
# create position_ids on the fly for batch generation
|
1774 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1775 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1776 |
+
if not empty_past_kv:
|
1777 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1778 |
+
|
1779 |
+
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1780 |
+
if inputs_embeds is not None and empty_past_kv:
|
1781 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1782 |
+
else:
|
1783 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
1784 |
+
|
1785 |
+
model_inputs.update(
|
1786 |
+
{
|
1787 |
+
"position_ids": position_ids,
|
1788 |
+
"past_key_values": past_key_values,
|
1789 |
+
"use_cache": use_cache,
|
1790 |
+
"attention_mask": attention_mask,
|
1791 |
+
"cache_position": cache_position,
|
1792 |
+
}
|
1793 |
+
)
|
1794 |
+
return model_inputs
|
1795 |
+
|
1796 |
+
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
1797 |
+
@add_code_sample_docstrings(
|
1798 |
+
output_type=CausalLMOutputWithPast,
|
1799 |
+
config_class=_CONFIG_FOR_DOC,
|
1800 |
+
)
|
1801 |
+
def forward(
|
1802 |
+
self,
|
1803 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1804 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1805 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1806 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1807 |
+
past_key_values: Optional[HybridMamba2AttentionDynamicCache] = None,
|
1808 |
+
labels: Optional[torch.LongTensor] = None,
|
1809 |
+
use_cache: Optional[bool] = None,
|
1810 |
+
output_attentions: Optional[bool] = None,
|
1811 |
+
output_hidden_states: Optional[bool] = None,
|
1812 |
+
return_dict: Optional[bool] = None,
|
1813 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1814 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1815 |
+
r"""
|
1816 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1817 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1818 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1819 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1820 |
+
"""
|
1821 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1822 |
+
|
1823 |
+
outputs = self.backbone(
|
1824 |
+
input_ids=input_ids,
|
1825 |
+
attention_mask=attention_mask,
|
1826 |
+
inputs_embeds=inputs_embeds,
|
1827 |
+
position_ids=position_ids,
|
1828 |
+
past_key_values=past_key_values,
|
1829 |
+
use_cache=use_cache,
|
1830 |
+
output_attentions=output_attentions,
|
1831 |
+
output_hidden_states=output_hidden_states,
|
1832 |
+
return_dict=return_dict,
|
1833 |
+
cache_position=cache_position,
|
1834 |
+
)
|
1835 |
+
|
1836 |
+
hidden_states = outputs[0]
|
1837 |
+
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
1838 |
+
|
1839 |
+
loss = None
|
1840 |
+
if labels is not None:
|
1841 |
+
# Move labels to correct device to enable model parallelism
|
1842 |
+
labels = labels.to(logits.device)
|
1843 |
+
# Shift so that tokens < n predict n
|
1844 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1845 |
+
shift_labels = labels[..., 1:].contiguous()
|
1846 |
+
# Flatten the tokens
|
1847 |
+
loss_fct = CrossEntropyLoss()
|
1848 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1849 |
+
|
1850 |
+
if not return_dict:
|
1851 |
+
output = (logits,) + outputs[1:]
|
1852 |
+
return ((loss,) + output) if loss is not None else output
|
1853 |
+
|
1854 |
+
return CausalLMOutputWithPast(
|
1855 |
+
loss=loss,
|
1856 |
+
logits=logits,
|
1857 |
+
past_key_values=outputs.past_key_values,
|
1858 |
+
hidden_states=outputs.hidden_states,
|
1859 |
+
attentions=outputs.attentions,
|
1860 |
+
)
|
1861 |
+
|
1862 |
+
|
1863 |
+
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->Mamba2, torch.tanh->F.silu
|
1864 |
+
class Mamba2ClassificationHead(nn.Module):
|
1865 |
+
"""Head for sentence-level classification tasks."""
|
1866 |
+
|
1867 |
+
def __init__(
|
1868 |
+
self,
|
1869 |
+
input_dim: int,
|
1870 |
+
inner_dim: int,
|
1871 |
+
num_classes: int,
|
1872 |
+
pooler_dropout: float,
|
1873 |
+
):
|
1874 |
+
super().__init__()
|
1875 |
+
self.dense = nn.Linear(input_dim, inner_dim)
|
1876 |
+
self.dropout = nn.Dropout(p=pooler_dropout)
|
1877 |
+
self.out_proj = nn.Linear(inner_dim, num_classes)
|
1878 |
+
|
1879 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1880 |
+
hidden_states = self.dropout(hidden_states)
|
1881 |
+
hidden_states = self.dense(hidden_states)
|
1882 |
+
hidden_states = F.silu(hidden_states)
|
1883 |
+
hidden_states = self.dropout(hidden_states)
|
1884 |
+
hidden_states = self.out_proj(hidden_states)
|
1885 |
+
return hidden_states
|
1886 |
+
|
1887 |
+
|
1888 |
+
@add_start_docstrings(
|
1889 |
+
"""
|
1890 |
+
Mamba2 Model backbone with a sequence classification/regression head on top
|
1891 |
+
(a linear layer on top of the pooled output) e.g. for GLUE tasks.
|
1892 |
+
|
1893 |
+
[`Mamba2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1894 |
+
(e.g. GPT-2) do.
|
1895 |
+
|
1896 |
+
Since it does classification on the last token, it requires to know the position of the last token.
|
1897 |
+
If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
|
1898 |
+
If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1899 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1900 |
+
each row of the batch).
|
1901 |
+
""",
|
1902 |
+
MAMBA2_START_DOCSTRING,
|
1903 |
+
)
|
1904 |
+
class Mamba2ForSequenceClassification(Mamba2PreTrainedModel):
|
1905 |
+
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.__init__ with Bart->Mamba2,d_model->hidden_size,model->backbone
|
1906 |
+
def __init__(self, config: Mamba2Config, **kwargs):
|
1907 |
+
super().__init__(config, **kwargs)
|
1908 |
+
self.backbone = Mamba2Model(config)
|
1909 |
+
self.classification_head = Mamba2ClassificationHead(
|
1910 |
+
config.hidden_size,
|
1911 |
+
config.hidden_size,
|
1912 |
+
config.num_labels,
|
1913 |
+
config.classifier_dropout,
|
1914 |
+
)
|
1915 |
+
|
1916 |
+
# Initialize weights and apply final processing
|
1917 |
+
self.post_init()
|
1918 |
+
|
1919 |
+
def get_input_embeddings(self):
|
1920 |
+
return self.backbone.embeddings
|
1921 |
+
|
1922 |
+
def set_input_embeddings(self, value):
|
1923 |
+
self.backbone.embeddings = value
|
1924 |
+
|
1925 |
+
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1926 |
+
@replace_return_docstrings(output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1927 |
+
@add_code_sample_docstrings(
|
1928 |
+
output_type=SequenceClassifierOutputWithPast,
|
1929 |
+
config_class=_CONFIG_FOR_DOC,
|
1930 |
+
)
|
1931 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification.forward with self.num_labels->self.config.num_labels,self.score->self.classification_head,self.model->self.backbone
|
1932 |
+
def forward(
|
1933 |
+
self,
|
1934 |
+
input_ids: torch.LongTensor = None,
|
1935 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1936 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1937 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1938 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1939 |
+
labels: Optional[torch.LongTensor] = None,
|
1940 |
+
use_cache: Optional[bool] = None,
|
1941 |
+
output_attentions: Optional[bool] = None,
|
1942 |
+
output_hidden_states: Optional[bool] = None,
|
1943 |
+
return_dict: Optional[bool] = None,
|
1944 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1945 |
+
r"""
|
1946 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1947 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1948 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1949 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1950 |
+
"""
|
1951 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1952 |
+
|
1953 |
+
transformer_outputs = self.backbone(
|
1954 |
+
input_ids,
|
1955 |
+
attention_mask=attention_mask,
|
1956 |
+
position_ids=position_ids,
|
1957 |
+
past_key_values=past_key_values,
|
1958 |
+
inputs_embeds=inputs_embeds,
|
1959 |
+
use_cache=use_cache,
|
1960 |
+
output_attentions=output_attentions,
|
1961 |
+
output_hidden_states=output_hidden_states,
|
1962 |
+
return_dict=return_dict,
|
1963 |
+
)
|
1964 |
+
hidden_states = transformer_outputs[0]
|
1965 |
+
logits = self.classification_head(hidden_states)
|
1966 |
+
|
1967 |
+
if input_ids is not None:
|
1968 |
+
batch_size = input_ids.shape[0]
|
1969 |
+
else:
|
1970 |
+
batch_size = inputs_embeds.shape[0]
|
1971 |
+
|
1972 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1973 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1974 |
+
if self.config.pad_token_id is None:
|
1975 |
+
sequence_lengths = -1
|
1976 |
+
else:
|
1977 |
+
if input_ids is not None:
|
1978 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1979 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1980 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1981 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1982 |
+
else:
|
1983 |
+
sequence_lengths = -1
|
1984 |
+
|
1985 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1986 |
+
|
1987 |
+
loss = None
|
1988 |
+
if labels is not None:
|
1989 |
+
labels = labels.to(logits.device)
|
1990 |
+
if self.config.problem_type is None:
|
1991 |
+
if self.config.num_labels == 1:
|
1992 |
+
self.config.problem_type = "regression"
|
1993 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1994 |
+
self.config.problem_type = "single_label_classification"
|
1995 |
+
else:
|
1996 |
+
self.config.problem_type = "multi_label_classification"
|
1997 |
+
|
1998 |
+
if self.config.problem_type == "regression":
|
1999 |
+
loss_fct = MSELoss()
|
2000 |
+
if self.config.num_labels == 1:
|
2001 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
2002 |
+
else:
|
2003 |
+
loss = loss_fct(pooled_logits, labels)
|
2004 |
+
elif self.config.problem_type == "single_label_classification":
|
2005 |
+
loss_fct = CrossEntropyLoss()
|
2006 |
+
loss = loss_fct(pooled_logits.view(-1, self.config.num_labels), labels.view(-1))
|
2007 |
+
elif self.config.problem_type == "multi_label_classification":
|
2008 |
+
loss_fct = BCEWithLogitsLoss()
|
2009 |
+
loss = loss_fct(pooled_logits, labels)
|
2010 |
+
if not return_dict:
|
2011 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
2012 |
+
return ((loss,) + output) if loss is not None else output
|
2013 |
+
|
2014 |
+
return SequenceClassifierOutputWithPast(
|
2015 |
+
loss=loss,
|
2016 |
+
logits=pooled_logits,
|
2017 |
+
past_key_values=transformer_outputs.past_key_values,
|
2018 |
+
hidden_states=transformer_outputs.hidden_states,
|
2019 |
+
attentions=transformer_outputs.attentions,
|
2020 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": null,
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|