Commit
·
95926b3
1
Parent(s):
56f2f3c
first commit
Browse files- config.json +29 -0
- configuration.json +1 -0
- configuration_yi.py +121 -0
- generation_config.json +13 -0
- generation_utils.py +56 -0
- modeling_yi.py +1055 -0
- pytorch_model-00001-of-00007.bin +3 -0
- pytorch_model-00002-of-00007.bin +3 -0
- pytorch_model-00003-of-00007.bin +3 -0
- pytorch_model-00004-of-00007.bin +3 -0
- pytorch_model-00005-of-00007.bin +3 -0
- pytorch_model-00006-of-00007.bin +3 -0
- pytorch_model-00007-of-00007.bin +3 -0
- pytorch_model.bin.index.json +550 -0
- tokenization_yi.py +255 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +9 -0
- training_args.bin +3 -0
- zero_to_fp32.py +578 -0
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"YiForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_yi.YiConfig",
|
| 7 |
+
"AutoModel": "modeling_yi.YiModel",
|
| 8 |
+
"AutoModelForCausalLM":"modeling_yi.YiForCausalLM"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 1,
|
| 11 |
+
"eos_token_id": 2,
|
| 12 |
+
"hidden_act": "silu",
|
| 13 |
+
"hidden_size": 7168,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 20480,
|
| 16 |
+
"max_position_embeddings": 4096,
|
| 17 |
+
"model_type": "Yi",
|
| 18 |
+
"num_attention_heads": 56,
|
| 19 |
+
"num_hidden_layers": 60,
|
| 20 |
+
"num_key_value_heads": 8,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"rope_theta": 5000000.0,
|
| 24 |
+
"tie_word_embeddings": false,
|
| 25 |
+
"torch_dtype": "bfloat16",
|
| 26 |
+
"transformers_version": "4.34.0",
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 64000
|
| 29 |
+
}
|
configuration.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"framework":"Pytorch","task":"text-generation"}
|
configuration_yi.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" Yi model configuration"""
|
| 2 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 3 |
+
from transformers.utils import logging
|
| 4 |
+
|
| 5 |
+
logger = logging.get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
Yi_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class YiConfig(PretrainedConfig):
|
| 11 |
+
r"""
|
| 12 |
+
This is the configuration class to store the configuration of a [`YiModel`]. It is used to instantiate an Yi
|
| 13 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 14 |
+
defaults will yield a similar configuration to that of the Yi model.
|
| 15 |
+
|
| 16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 17 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
vocab_size (`int`, *optional*, defaults to 64000):
|
| 22 |
+
Vocabulary size of the Yi model. Defines the number of different tokens that can be represented by the
|
| 23 |
+
`inputs_ids` passed when calling [`YiModel`]
|
| 24 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 25 |
+
Dimension of the hidden representations.
|
| 26 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 27 |
+
Dimension of the MLP representations.
|
| 28 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 29 |
+
Number of hidden layers in the Transformer encoder.
|
| 30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 32 |
+
num_key_value_heads (`int`, *optional*):
|
| 33 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 34 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 35 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 36 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 37 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 38 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 39 |
+
`num_attention_heads`.
|
| 40 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 41 |
+
The non-linear activation function (function or string) in the decoder.
|
| 42 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 43 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 44 |
+
just in case (e.g., 512 or 1024 or 2048 or 4096).
|
| 45 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 46 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 47 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-5):
|
| 48 |
+
The epsilon used by the rms normalization layers.
|
| 49 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 50 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 51 |
+
relevant if `config.is_decoder=True`.
|
| 52 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 53 |
+
Whether to tie weight embeddings
|
| 54 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
| 55 |
+
Whether or not to output attentions.
|
| 56 |
+
rope_theta (`float`, *optional*, defaults to 5000000.0):
|
| 57 |
+
The base period of the RoPE embeddings.
|
| 58 |
+
Example:
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
>>> from transformers import YiModel, YiConfig
|
| 62 |
+
|
| 63 |
+
>>> # Initializing a Yi style configuration
|
| 64 |
+
>>> configuration = YiConfig()
|
| 65 |
+
|
| 66 |
+
>>> # Initializing a model from the Yi style configuration
|
| 67 |
+
>>> model = YiModel(configuration)
|
| 68 |
+
|
| 69 |
+
>>> # Accessing the model configuration
|
| 70 |
+
>>> configuration = model.config
|
| 71 |
+
```"""
|
| 72 |
+
model_type = "Yi"
|
| 73 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 74 |
+
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
vocab_size=64000,
|
| 78 |
+
hidden_size=4096,
|
| 79 |
+
intermediate_size=11008,
|
| 80 |
+
num_hidden_layers=32,
|
| 81 |
+
num_attention_heads=32,
|
| 82 |
+
num_key_value_heads=4,
|
| 83 |
+
hidden_act="silu",
|
| 84 |
+
max_position_embeddings=4096,
|
| 85 |
+
initializer_range=0.02,
|
| 86 |
+
rms_norm_eps=1e-5,
|
| 87 |
+
use_cache=True,
|
| 88 |
+
pad_token_id=0,
|
| 89 |
+
bos_token_id=1,
|
| 90 |
+
eos_token_id=2,
|
| 91 |
+
tie_word_embeddings=False,
|
| 92 |
+
output_attentions=False,
|
| 93 |
+
rope_theta=5000000.0,
|
| 94 |
+
**kwargs,
|
| 95 |
+
):
|
| 96 |
+
self.vocab_size = vocab_size
|
| 97 |
+
self.max_position_embeddings = max_position_embeddings
|
| 98 |
+
self.hidden_size = hidden_size
|
| 99 |
+
self.intermediate_size = intermediate_size
|
| 100 |
+
self.num_hidden_layers = num_hidden_layers
|
| 101 |
+
self.num_attention_heads = num_attention_heads
|
| 102 |
+
|
| 103 |
+
# for backward compatibility
|
| 104 |
+
if num_key_value_heads is None:
|
| 105 |
+
num_key_value_heads = num_attention_heads
|
| 106 |
+
|
| 107 |
+
self.num_key_value_heads = num_key_value_heads
|
| 108 |
+
self.hidden_act = hidden_act
|
| 109 |
+
self.initializer_range = initializer_range
|
| 110 |
+
self.rms_norm_eps = rms_norm_eps
|
| 111 |
+
self.use_cache = use_cache
|
| 112 |
+
self.output_attentions = output_attentions
|
| 113 |
+
self.rope_theta = rope_theta
|
| 114 |
+
|
| 115 |
+
super().__init__(
|
| 116 |
+
pad_token_id=pad_token_id,
|
| 117 |
+
bos_token_id=bos_token_id,
|
| 118 |
+
eos_token_id=eos_token_id,
|
| 119 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 120 |
+
**kwargs,
|
| 121 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"max_new_tokens": 256,
|
| 7 |
+
"temperature": 0.3,
|
| 8 |
+
"top_k": 5,
|
| 9 |
+
"top_p": 0.90,
|
| 10 |
+
"repetition_penalty": 1.05,
|
| 11 |
+
"do_sample": true,
|
| 12 |
+
"transformers_version": "4.34.0"
|
| 13 |
+
}
|
generation_utils.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
from queue import Queue
|
| 3 |
+
|
| 4 |
+
# build chat input prompt
|
| 5 |
+
def build_chat_input(tokenizer, messages: List[dict]):
|
| 6 |
+
# chat format:
|
| 7 |
+
# single-turn: <|startoftext|>Human: Hello!\n\nAssistant: <|endoftext|>
|
| 8 |
+
# multi-turn: <|startoftext|>Human: Hello!\n\nAssistant: <|endoftext|>Hi!<|endoftext|>Human: How are you?\n\nAssistant: <|endoftext|>target2<|endoftext|>
|
| 9 |
+
|
| 10 |
+
prompt = "<|startoftext|>"
|
| 11 |
+
for msg in messages:
|
| 12 |
+
role = msg["role"]
|
| 13 |
+
message = msg["content"]
|
| 14 |
+
if message is None :
|
| 15 |
+
continue
|
| 16 |
+
if role == "user":
|
| 17 |
+
prompt += "Human: " + message + "\n\nAssistant: <|endoftext|>"
|
| 18 |
+
if role == "assistant":
|
| 19 |
+
prompt += message + "<|endoftext|>"
|
| 20 |
+
|
| 21 |
+
input_tokens = tokenizer.encode(prompt)
|
| 22 |
+
return input_tokens
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class TextIterStreamer:
|
| 26 |
+
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
|
| 27 |
+
self.tokenizer = tokenizer
|
| 28 |
+
self.skip_prompt = skip_prompt
|
| 29 |
+
self.skip_special_tokens = skip_special_tokens
|
| 30 |
+
self.tokens = []
|
| 31 |
+
self.text_queue = Queue()
|
| 32 |
+
self.next_tokens_are_prompt = True
|
| 33 |
+
|
| 34 |
+
def put(self, value):
|
| 35 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
| 36 |
+
self.next_tokens_are_prompt = False
|
| 37 |
+
else:
|
| 38 |
+
if len(value.shape) > 1:
|
| 39 |
+
value = value[0]
|
| 40 |
+
self.tokens.extend(value.tolist())
|
| 41 |
+
self.text_queue.put(
|
| 42 |
+
self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
|
| 43 |
+
|
| 44 |
+
def end(self):
|
| 45 |
+
self.text_queue.put(None)
|
| 46 |
+
|
| 47 |
+
def __iter__(self):
|
| 48 |
+
return self
|
| 49 |
+
|
| 50 |
+
def __next__(self):
|
| 51 |
+
value = self.text_queue.get()
|
| 52 |
+
if value is None:
|
| 53 |
+
raise StopIteration()
|
| 54 |
+
else:
|
| 55 |
+
return value
|
| 56 |
+
|
modeling_yi.py
ADDED
|
@@ -0,0 +1,1055 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" PyTorch Yi model."""
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from einops import repeat
|
| 7 |
+
from packaging import version
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 10 |
+
from transformers.activations import ACT2FN
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
BaseModelOutputWithPast,
|
| 13 |
+
CausalLMOutputWithPast,
|
| 14 |
+
SequenceClassifierOutputWithPast,
|
| 15 |
+
)
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 18 |
+
from transformers.utils import (
|
| 19 |
+
add_start_docstrings,
|
| 20 |
+
add_start_docstrings_to_model_forward,
|
| 21 |
+
logging,
|
| 22 |
+
replace_return_docstrings,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
from .configuration_yi import YiConfig
|
| 26 |
+
from .generation_utils import build_chat_input, TextIterStreamer
|
| 27 |
+
from transformers.generation.utils import GenerationConfig
|
| 28 |
+
from threading import Thread
|
| 29 |
+
|
| 30 |
+
is_flash_attn_available = True
|
| 31 |
+
try:
|
| 32 |
+
from flash_attn import flash_attn_func, __version__
|
| 33 |
+
|
| 34 |
+
assert version.parse(__version__) >= version.parse(
|
| 35 |
+
"2.3.0"
|
| 36 |
+
), "please update your flash_attn version (>= 2.3.0)"
|
| 37 |
+
except ModuleNotFoundError:
|
| 38 |
+
is_flash_attn_available = False
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__)
|
| 41 |
+
|
| 42 |
+
_CONFIG_FOR_DOC = "YiConfig"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 46 |
+
def _make_causal_mask(
|
| 47 |
+
input_ids_shape: torch.Size,
|
| 48 |
+
dtype: torch.dtype,
|
| 49 |
+
device: torch.device,
|
| 50 |
+
past_key_values_length: int = 0,
|
| 51 |
+
):
|
| 52 |
+
"""
|
| 53 |
+
Make causal mask used for bi-directional self-attention.
|
| 54 |
+
"""
|
| 55 |
+
bsz, tgt_len = input_ids_shape
|
| 56 |
+
mask = torch.full(
|
| 57 |
+
(tgt_len, tgt_len),
|
| 58 |
+
torch.tensor(torch.finfo(dtype).min, device=device),
|
| 59 |
+
device=device,
|
| 60 |
+
)
|
| 61 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 62 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 63 |
+
mask = mask.to(dtype)
|
| 64 |
+
|
| 65 |
+
if past_key_values_length > 0:
|
| 66 |
+
mask = torch.cat(
|
| 67 |
+
[
|
| 68 |
+
torch.zeros(
|
| 69 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
| 70 |
+
),
|
| 71 |
+
mask,
|
| 72 |
+
],
|
| 73 |
+
dim=-1,
|
| 74 |
+
)
|
| 75 |
+
return mask[None, None, :, :].expand(
|
| 76 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 81 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 82 |
+
"""
|
| 83 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 84 |
+
"""
|
| 85 |
+
bsz, src_len = mask.size()
|
| 86 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 87 |
+
|
| 88 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 89 |
+
|
| 90 |
+
inverted_mask = 1.0 - expanded_mask
|
| 91 |
+
|
| 92 |
+
return inverted_mask.masked_fill(
|
| 93 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class YiRMSNorm(nn.Module):
|
| 98 |
+
def __init__(self, hidden_size, eps=1e-5):
|
| 99 |
+
"""
|
| 100 |
+
YiRMSNorm is equivalent to T5LayerNorm
|
| 101 |
+
"""
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 104 |
+
self.variance_epsilon = eps
|
| 105 |
+
|
| 106 |
+
def forward(self, hidden_states):
|
| 107 |
+
input_dtype = hidden_states.dtype
|
| 108 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 109 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 110 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 111 |
+
|
| 112 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
ALL_LAYERNORM_LAYERS.append(YiRMSNorm)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class YiRotaryEmbedding(torch.nn.Module):
|
| 119 |
+
def __init__(self, dim, max_position_embeddings=4096, base=5000000, device=None):
|
| 120 |
+
super().__init__()
|
| 121 |
+
|
| 122 |
+
self.dim = dim
|
| 123 |
+
self.max_position_embeddings = max_position_embeddings
|
| 124 |
+
self.base = base
|
| 125 |
+
|
| 126 |
+
# Build here to make `torch.jit.trace` work.
|
| 127 |
+
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device)
|
| 128 |
+
|
| 129 |
+
def _set_cos_sin_cache(self, seq_len, device):
|
| 130 |
+
self.max_seq_len_cached = seq_len
|
| 131 |
+
inv_freq = 1.0 / (
|
| 132 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
| 133 |
+
)
|
| 134 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
| 135 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
| 136 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 137 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 138 |
+
self.register_buffer(
|
| 139 |
+
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
| 140 |
+
)
|
| 141 |
+
self.register_buffer(
|
| 142 |
+
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
def forward(self, x, seq_len=None):
|
| 146 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 147 |
+
if seq_len > self.max_seq_len_cached:
|
| 148 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device)
|
| 149 |
+
|
| 150 |
+
return (
|
| 151 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 152 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def rotate_half(x):
|
| 157 |
+
"""Rotates half the hidden dims of the input."""
|
| 158 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 159 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 160 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, flash_attn_available):
|
| 164 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 165 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 166 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 167 |
+
expand_dim = 2 if flash_attn_available else 1
|
| 168 |
+
cos = cos[position_ids].unsqueeze(expand_dim) # [bs, seq_len, dim]
|
| 169 |
+
sin = sin[position_ids].unsqueeze(expand_dim) # [bs, seq_len, dim]
|
| 170 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 171 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 172 |
+
return q_embed, k_embed
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class YiMLP(nn.Module):
|
| 176 |
+
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
|
| 177 |
+
super().__init__()
|
| 178 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 179 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 180 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 181 |
+
self.act_fn = ACT2FN[hidden_act]
|
| 182 |
+
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class YiAttention(nn.Module):
|
| 188 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 189 |
+
|
| 190 |
+
def __init__(self, config: YiConfig):
|
| 191 |
+
super().__init__()
|
| 192 |
+
self.config = config
|
| 193 |
+
self.hidden_size = config.hidden_size
|
| 194 |
+
self.num_heads = config.num_attention_heads
|
| 195 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 196 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 197 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 198 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 199 |
+
|
| 200 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 201 |
+
raise ValueError(
|
| 202 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 203 |
+
f" and `num_heads`: {self.num_heads})."
|
| 204 |
+
)
|
| 205 |
+
self.q_proj = nn.Linear(
|
| 206 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
| 207 |
+
)
|
| 208 |
+
self.k_proj = nn.Linear(
|
| 209 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
| 210 |
+
)
|
| 211 |
+
self.v_proj = nn.Linear(
|
| 212 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
| 213 |
+
)
|
| 214 |
+
self.o_proj = nn.Linear(
|
| 215 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
self.rotary_emb = YiRotaryEmbedding(
|
| 219 |
+
self.head_dim,
|
| 220 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 221 |
+
base=self.config.rope_theta,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
def forward(
|
| 225 |
+
self,
|
| 226 |
+
hidden_states: torch.Tensor,
|
| 227 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 228 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 229 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 230 |
+
output_attentions: bool = False,
|
| 231 |
+
use_cache: bool = False,
|
| 232 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 233 |
+
bsz, q_len, _ = hidden_states.size()
|
| 234 |
+
|
| 235 |
+
query_states = self.q_proj(hidden_states).view(
|
| 236 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
key_states = self.k_proj(hidden_states).view(
|
| 240 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 241 |
+
)
|
| 242 |
+
value_states = self.v_proj(hidden_states).view(
|
| 243 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
if not is_flash_attn_available:
|
| 247 |
+
if self.num_key_value_groups > 1:
|
| 248 |
+
key_states = repeat(
|
| 249 |
+
key_states, f"b n h d -> b n (h {self.num_key_value_groups}) d"
|
| 250 |
+
)
|
| 251 |
+
value_states = repeat(
|
| 252 |
+
value_states, f"b n h d -> b n (h {self.num_key_value_groups}) d"
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# b n h d -> b h n d
|
| 256 |
+
query_states = query_states.transpose(1, 2)
|
| 257 |
+
key_states = key_states.transpose(1, 2)
|
| 258 |
+
value_states = value_states.transpose(1, 2)
|
| 259 |
+
|
| 260 |
+
seq_dim = 1 if is_flash_attn_available else 2
|
| 261 |
+
kv_seq_len = key_states.shape[seq_dim]
|
| 262 |
+
if past_key_value is not None:
|
| 263 |
+
kv_seq_len += past_key_value[0].shape[seq_dim]
|
| 264 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 265 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 266 |
+
query_states, key_states, cos, sin, position_ids, is_flash_attn_available
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
if past_key_value is not None:
|
| 270 |
+
# reuse k, v, self_attention
|
| 271 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=seq_dim)
|
| 272 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=seq_dim)
|
| 273 |
+
|
| 274 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 275 |
+
|
| 276 |
+
if is_flash_attn_available:
|
| 277 |
+
attn_output = flash_attn_func(
|
| 278 |
+
query_states, key_states, value_states, dropout_p=0.0, causal=True
|
| 279 |
+
)
|
| 280 |
+
else:
|
| 281 |
+
attn_weights = torch.matmul(
|
| 282 |
+
query_states, key_states.transpose(2, 3)
|
| 283 |
+
) / math.sqrt(self.head_dim)
|
| 284 |
+
|
| 285 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 286 |
+
raise ValueError(
|
| 287 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 288 |
+
f" {attn_weights.size()}"
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
if attention_mask is not None:
|
| 292 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 293 |
+
raise ValueError(
|
| 294 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is"
|
| 295 |
+
f"{attention_mask.size()}"
|
| 296 |
+
)
|
| 297 |
+
attn_weights = attn_weights + attention_mask
|
| 298 |
+
dtype_min = torch.tensor(
|
| 299 |
+
torch.finfo(attn_weights.dtype).min,
|
| 300 |
+
device=attn_weights.device,
|
| 301 |
+
dtype=attn_weights.dtype,
|
| 302 |
+
)
|
| 303 |
+
attn_weights = torch.max(attn_weights, dtype_min)
|
| 304 |
+
|
| 305 |
+
# upcast attention to fp32
|
| 306 |
+
attn_weights = nn.functional.softmax(
|
| 307 |
+
attn_weights, dim=-1, dtype=torch.float32
|
| 308 |
+
).to(query_states.dtype)
|
| 309 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 310 |
+
|
| 311 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 312 |
+
raise ValueError(
|
| 313 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 314 |
+
f" {attn_output.size()}"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
if not is_flash_attn_available:
|
| 318 |
+
attn_output = attn_output.transpose(1, 2)
|
| 319 |
+
|
| 320 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 321 |
+
|
| 322 |
+
attn_output = self.o_proj(attn_output)
|
| 323 |
+
|
| 324 |
+
if not output_attentions:
|
| 325 |
+
attn_weights = None
|
| 326 |
+
|
| 327 |
+
return attn_output, attn_weights, past_key_value
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class YiDecoderLayer(nn.Module):
|
| 331 |
+
def __init__(self, config: YiConfig):
|
| 332 |
+
super().__init__()
|
| 333 |
+
|
| 334 |
+
self.hidden_size = config.hidden_size
|
| 335 |
+
self.self_attn = YiAttention(config=config)
|
| 336 |
+
self.mlp = YiMLP(
|
| 337 |
+
hidden_size=self.hidden_size,
|
| 338 |
+
intermediate_size=config.intermediate_size,
|
| 339 |
+
hidden_act=config.hidden_act,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
self.ln1 = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 343 |
+
self.ln2 = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 344 |
+
|
| 345 |
+
def forward(
|
| 346 |
+
self,
|
| 347 |
+
hidden_states: torch.Tensor,
|
| 348 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 349 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 350 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 351 |
+
output_attentions: Optional[bool] = False,
|
| 352 |
+
use_cache: Optional[bool] = False,
|
| 353 |
+
) -> Tuple[
|
| 354 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 355 |
+
]:
|
| 356 |
+
"""
|
| 357 |
+
Args:
|
| 358 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 359 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 360 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 361 |
+
output_attentions (`bool`, *optional*):
|
| 362 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 363 |
+
returned tensors for more detail.
|
| 364 |
+
use_cache (`bool`, *optional*):
|
| 365 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 366 |
+
(see `past_key_values`).
|
| 367 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 368 |
+
"""
|
| 369 |
+
|
| 370 |
+
residual = hidden_states
|
| 371 |
+
|
| 372 |
+
hidden_states = self.ln1(hidden_states)
|
| 373 |
+
|
| 374 |
+
# Self Attention
|
| 375 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 376 |
+
hidden_states=hidden_states,
|
| 377 |
+
attention_mask=attention_mask,
|
| 378 |
+
position_ids=position_ids,
|
| 379 |
+
past_key_value=past_key_value,
|
| 380 |
+
output_attentions=output_attentions,
|
| 381 |
+
use_cache=use_cache,
|
| 382 |
+
)
|
| 383 |
+
hidden_states = residual + hidden_states
|
| 384 |
+
|
| 385 |
+
# Fully Connected
|
| 386 |
+
residual = hidden_states
|
| 387 |
+
hidden_states = self.ln2(hidden_states)
|
| 388 |
+
hidden_states = self.mlp(hidden_states)
|
| 389 |
+
hidden_states = residual + hidden_states
|
| 390 |
+
|
| 391 |
+
outputs = (hidden_states,)
|
| 392 |
+
|
| 393 |
+
if output_attentions:
|
| 394 |
+
outputs += (self_attn_weights,)
|
| 395 |
+
|
| 396 |
+
if use_cache:
|
| 397 |
+
outputs += (present_key_value,)
|
| 398 |
+
|
| 399 |
+
return outputs
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
Yi_START_DOCSTRING = r"""
|
| 403 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 404 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 405 |
+
etc.)
|
| 406 |
+
|
| 407 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 408 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 409 |
+
and behavior.
|
| 410 |
+
|
| 411 |
+
Parameters:
|
| 412 |
+
config ([`YiConfig`]):
|
| 413 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 414 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 415 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 416 |
+
"""
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
@add_start_docstrings(
|
| 420 |
+
"The bare Yi Model outputting raw hidden-states without any specific head on top.",
|
| 421 |
+
Yi_START_DOCSTRING,
|
| 422 |
+
)
|
| 423 |
+
class YiPreTrainedModel(PreTrainedModel):
|
| 424 |
+
config_class = YiConfig
|
| 425 |
+
base_model_prefix = "model"
|
| 426 |
+
supports_gradient_checkpointing = True
|
| 427 |
+
_no_split_modules = ["YiDecoderLayer"]
|
| 428 |
+
_skip_keys_device_placement = "past_key_values"
|
| 429 |
+
|
| 430 |
+
def _init_weights(self, module):
|
| 431 |
+
std = self.config.initializer_range
|
| 432 |
+
if isinstance(module, nn.Linear):
|
| 433 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 434 |
+
if module.bias is not None:
|
| 435 |
+
module.bias.data.zero_()
|
| 436 |
+
elif isinstance(module, nn.Embedding):
|
| 437 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 438 |
+
if module.padding_idx is not None:
|
| 439 |
+
module.weight.data[module.padding_idx].zero_()
|
| 440 |
+
|
| 441 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 442 |
+
if isinstance(module, YiModel):
|
| 443 |
+
module.gradient_checkpointing = value
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
Yi_INPUTS_DOCSTRING = r"""
|
| 447 |
+
Args:
|
| 448 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 449 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 450 |
+
it.
|
| 451 |
+
|
| 452 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 453 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 454 |
+
|
| 455 |
+
[What are input IDs?](../glossary#input-ids)
|
| 456 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 457 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 458 |
+
|
| 459 |
+
- 1 for tokens that are **not masked**,
|
| 460 |
+
- 0 for tokens that are **masked**.
|
| 461 |
+
|
| 462 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 463 |
+
|
| 464 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 465 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 466 |
+
|
| 467 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 468 |
+
`past_key_values`).
|
| 469 |
+
|
| 470 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 471 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 472 |
+
information on the default strategy.
|
| 473 |
+
|
| 474 |
+
- 1 indicates the head is **not masked**,
|
| 475 |
+
- 0 indicates the head is **masked**.
|
| 476 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 477 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 478 |
+
config.n_positions - 1]`.
|
| 479 |
+
|
| 480 |
+
[What are position IDs?](../glossary#position-ids)
|
| 481 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 482 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 483 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 484 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 485 |
+
|
| 486 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 487 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 488 |
+
|
| 489 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 490 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 491 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 492 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 493 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 494 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 495 |
+
model's internal embedding lookup matrix.
|
| 496 |
+
use_cache (`bool`, *optional*):
|
| 497 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 498 |
+
`past_key_values`).
|
| 499 |
+
output_attentions (`bool`, *optional*):
|
| 500 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 501 |
+
tensors for more detail.
|
| 502 |
+
output_hidden_states (`bool`, *optional*):
|
| 503 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 504 |
+
more detail.
|
| 505 |
+
return_dict (`bool`, *optional*):
|
| 506 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 507 |
+
"""
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
@add_start_docstrings(
|
| 511 |
+
"The bare Yi Model outputting raw hidden-states without any specific head on top.",
|
| 512 |
+
Yi_START_DOCSTRING,
|
| 513 |
+
)
|
| 514 |
+
class YiModel(YiPreTrainedModel):
|
| 515 |
+
"""
|
| 516 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YiDecoderLayer`]
|
| 517 |
+
|
| 518 |
+
Args:
|
| 519 |
+
config: YiConfig
|
| 520 |
+
"""
|
| 521 |
+
|
| 522 |
+
def __init__(self, config: YiConfig):
|
| 523 |
+
super().__init__(config)
|
| 524 |
+
self.padding_idx = config.pad_token_id
|
| 525 |
+
self.vocab_size = config.vocab_size
|
| 526 |
+
|
| 527 |
+
self.embed_tokens = nn.Embedding(
|
| 528 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 529 |
+
)
|
| 530 |
+
self.layers = nn.ModuleList(
|
| 531 |
+
[YiDecoderLayer(config) for _ in range(config.num_hidden_layers)]
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
self.norm = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 535 |
+
|
| 536 |
+
self.gradient_checkpointing = False
|
| 537 |
+
# Initialize weights and apply final processing
|
| 538 |
+
self.post_init()
|
| 539 |
+
|
| 540 |
+
def get_input_embeddings(self):
|
| 541 |
+
return self.embed_tokens
|
| 542 |
+
|
| 543 |
+
def set_input_embeddings(self, value):
|
| 544 |
+
self.embed_tokens = value
|
| 545 |
+
|
| 546 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 547 |
+
def _prepare_decoder_attention_mask(
|
| 548 |
+
self, attention_mask, input_ids, inputs_embeds, past_key_values_length
|
| 549 |
+
):
|
| 550 |
+
input_shape = (
|
| 551 |
+
input_ids.shape if input_ids is not None else inputs_embeds.shape[:-1]
|
| 552 |
+
)
|
| 553 |
+
# create causal mask
|
| 554 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 555 |
+
combined_attention_mask = None
|
| 556 |
+
if input_shape[-1] > 1:
|
| 557 |
+
combined_attention_mask = _make_causal_mask(
|
| 558 |
+
input_shape,
|
| 559 |
+
inputs_embeds.dtype,
|
| 560 |
+
device=inputs_embeds.device,
|
| 561 |
+
past_key_values_length=past_key_values_length,
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
if attention_mask is not None:
|
| 565 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 566 |
+
expanded_attn_mask = _expand_mask(
|
| 567 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 568 |
+
).to(inputs_embeds.device)
|
| 569 |
+
combined_attention_mask = (
|
| 570 |
+
expanded_attn_mask
|
| 571 |
+
if combined_attention_mask is None
|
| 572 |
+
else expanded_attn_mask + combined_attention_mask
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
return combined_attention_mask
|
| 576 |
+
|
| 577 |
+
@add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
|
| 578 |
+
def forward(
|
| 579 |
+
self,
|
| 580 |
+
input_ids: torch.LongTensor = None,
|
| 581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 582 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 583 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 584 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 585 |
+
use_cache: Optional[bool] = None,
|
| 586 |
+
output_attentions: Optional[bool] = None,
|
| 587 |
+
output_hidden_states: Optional[bool] = None,
|
| 588 |
+
return_dict: Optional[bool] = None,
|
| 589 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 590 |
+
output_attentions = (
|
| 591 |
+
output_attentions
|
| 592 |
+
if output_attentions is not None
|
| 593 |
+
else self.config.output_attentions
|
| 594 |
+
)
|
| 595 |
+
output_hidden_states = (
|
| 596 |
+
output_hidden_states
|
| 597 |
+
if output_hidden_states is not None
|
| 598 |
+
else self.config.output_hidden_states
|
| 599 |
+
)
|
| 600 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 601 |
+
|
| 602 |
+
return_dict = (
|
| 603 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
# retrieve input_ids and inputs_embeds
|
| 607 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 608 |
+
raise ValueError(
|
| 609 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
| 610 |
+
)
|
| 611 |
+
elif input_ids is not None:
|
| 612 |
+
batch_size, seq_length = input_ids.shape
|
| 613 |
+
elif inputs_embeds is not None:
|
| 614 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 615 |
+
else:
|
| 616 |
+
raise ValueError(
|
| 617 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
seq_length_with_past = seq_length
|
| 621 |
+
past_key_values_length = 0
|
| 622 |
+
|
| 623 |
+
if past_key_values is not None:
|
| 624 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 625 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 626 |
+
|
| 627 |
+
if position_ids is None:
|
| 628 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 629 |
+
position_ids = torch.arange(
|
| 630 |
+
past_key_values_length,
|
| 631 |
+
seq_length + past_key_values_length,
|
| 632 |
+
dtype=torch.long,
|
| 633 |
+
device=device,
|
| 634 |
+
)
|
| 635 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 636 |
+
else:
|
| 637 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 638 |
+
|
| 639 |
+
if inputs_embeds is None:
|
| 640 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 641 |
+
|
| 642 |
+
if not is_flash_attn_available:
|
| 643 |
+
# embed positions
|
| 644 |
+
if attention_mask is None:
|
| 645 |
+
attention_mask = torch.ones(
|
| 646 |
+
(batch_size, seq_length_with_past),
|
| 647 |
+
dtype=torch.bool,
|
| 648 |
+
device=inputs_embeds.device,
|
| 649 |
+
)
|
| 650 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 651 |
+
attention_mask,
|
| 652 |
+
input_ids,
|
| 653 |
+
inputs_embeds,
|
| 654 |
+
past_key_values_length,
|
| 655 |
+
)
|
| 656 |
+
else:
|
| 657 |
+
attention_mask = None
|
| 658 |
+
|
| 659 |
+
hidden_states = inputs_embeds
|
| 660 |
+
if self.gradient_checkpointing and self.training:
|
| 661 |
+
if use_cache:
|
| 662 |
+
logger.warning_once(
|
| 663 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 664 |
+
)
|
| 665 |
+
use_cache = False
|
| 666 |
+
|
| 667 |
+
# decoder layers
|
| 668 |
+
all_hidden_states = () if output_hidden_states else None
|
| 669 |
+
all_self_attns = () if output_attentions else None
|
| 670 |
+
next_decoder_cache = () if use_cache else None
|
| 671 |
+
|
| 672 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 673 |
+
if output_hidden_states:
|
| 674 |
+
all_hidden_states += (hidden_states,)
|
| 675 |
+
|
| 676 |
+
past_key_value = (
|
| 677 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if self.gradient_checkpointing and self.training:
|
| 681 |
+
|
| 682 |
+
def create_custom_forward(module):
|
| 683 |
+
def custom_forward(*inputs):
|
| 684 |
+
# None for past_key_value
|
| 685 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 686 |
+
|
| 687 |
+
return custom_forward
|
| 688 |
+
|
| 689 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 690 |
+
create_custom_forward(decoder_layer),
|
| 691 |
+
hidden_states,
|
| 692 |
+
attention_mask,
|
| 693 |
+
position_ids,
|
| 694 |
+
)
|
| 695 |
+
else:
|
| 696 |
+
layer_outputs = decoder_layer(
|
| 697 |
+
hidden_states,
|
| 698 |
+
attention_mask=attention_mask,
|
| 699 |
+
position_ids=position_ids,
|
| 700 |
+
past_key_value=past_key_value,
|
| 701 |
+
output_attentions=output_attentions,
|
| 702 |
+
use_cache=use_cache,
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
hidden_states = layer_outputs[0]
|
| 706 |
+
|
| 707 |
+
if use_cache:
|
| 708 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 709 |
+
|
| 710 |
+
if output_attentions:
|
| 711 |
+
all_self_attns += (layer_outputs[1],)
|
| 712 |
+
|
| 713 |
+
hidden_states = self.norm(hidden_states)
|
| 714 |
+
# add hidden states from the last decoder layer
|
| 715 |
+
if output_hidden_states:
|
| 716 |
+
all_hidden_states += (hidden_states,)
|
| 717 |
+
|
| 718 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 719 |
+
if not return_dict:
|
| 720 |
+
return tuple(
|
| 721 |
+
v
|
| 722 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 723 |
+
if v is not None
|
| 724 |
+
)
|
| 725 |
+
return BaseModelOutputWithPast(
|
| 726 |
+
last_hidden_state=hidden_states,
|
| 727 |
+
past_key_values=next_cache,
|
| 728 |
+
hidden_states=all_hidden_states,
|
| 729 |
+
attentions=all_self_attns,
|
| 730 |
+
)
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
class YiForCausalLM(YiPreTrainedModel):
|
| 734 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 735 |
+
|
| 736 |
+
def __init__(self, config):
|
| 737 |
+
super().__init__(config)
|
| 738 |
+
self.model = YiModel(config)
|
| 739 |
+
|
| 740 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 741 |
+
|
| 742 |
+
# Initialize weights and apply final processing
|
| 743 |
+
self.post_init()
|
| 744 |
+
|
| 745 |
+
def get_input_embeddings(self):
|
| 746 |
+
return self.model.embed_tokens
|
| 747 |
+
|
| 748 |
+
def set_input_embeddings(self, value):
|
| 749 |
+
self.model.embed_tokens = value
|
| 750 |
+
|
| 751 |
+
def get_output_embeddings(self):
|
| 752 |
+
return self.lm_head
|
| 753 |
+
|
| 754 |
+
def set_output_embeddings(self, new_embeddings):
|
| 755 |
+
self.lm_head = new_embeddings
|
| 756 |
+
|
| 757 |
+
def set_decoder(self, decoder):
|
| 758 |
+
self.model = decoder
|
| 759 |
+
|
| 760 |
+
def get_decoder(self):
|
| 761 |
+
return self.model
|
| 762 |
+
|
| 763 |
+
@add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
|
| 764 |
+
@replace_return_docstrings(
|
| 765 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 766 |
+
)
|
| 767 |
+
def forward(
|
| 768 |
+
self,
|
| 769 |
+
input_ids: torch.LongTensor = None,
|
| 770 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 771 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 772 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 773 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 774 |
+
labels: Optional[torch.LongTensor] = None,
|
| 775 |
+
use_cache: Optional[bool] = None,
|
| 776 |
+
output_attentions: Optional[bool] = None,
|
| 777 |
+
output_hidden_states: Optional[bool] = None,
|
| 778 |
+
return_dict: Optional[bool] = None,
|
| 779 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 780 |
+
r"""
|
| 781 |
+
Args:
|
| 782 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 783 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 784 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 785 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 786 |
+
|
| 787 |
+
Returns:
|
| 788 |
+
|
| 789 |
+
Example:
|
| 790 |
+
|
| 791 |
+
```python
|
| 792 |
+
>>> from transformers import AutoTokenizer, YiForCausalLM
|
| 793 |
+
|
| 794 |
+
>>> model = YiForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 795 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 796 |
+
|
| 797 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 798 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 799 |
+
|
| 800 |
+
>>> # Generate
|
| 801 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 802 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 803 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 804 |
+
```"""
|
| 805 |
+
|
| 806 |
+
output_attentions = (
|
| 807 |
+
output_attentions
|
| 808 |
+
if output_attentions is not None
|
| 809 |
+
else self.config.output_attentions
|
| 810 |
+
)
|
| 811 |
+
output_hidden_states = (
|
| 812 |
+
output_hidden_states
|
| 813 |
+
if output_hidden_states is not None
|
| 814 |
+
else self.config.output_hidden_states
|
| 815 |
+
)
|
| 816 |
+
return_dict = (
|
| 817 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 821 |
+
outputs = self.model(
|
| 822 |
+
input_ids=input_ids,
|
| 823 |
+
attention_mask=attention_mask,
|
| 824 |
+
position_ids=position_ids,
|
| 825 |
+
past_key_values=past_key_values,
|
| 826 |
+
inputs_embeds=inputs_embeds,
|
| 827 |
+
use_cache=use_cache,
|
| 828 |
+
output_attentions=output_attentions,
|
| 829 |
+
output_hidden_states=output_hidden_states,
|
| 830 |
+
return_dict=return_dict,
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
hidden_states = outputs[0]
|
| 834 |
+
logits = self.lm_head(hidden_states)
|
| 835 |
+
|
| 836 |
+
loss = None
|
| 837 |
+
if labels is not None:
|
| 838 |
+
# Shift so that tokens < n predict n
|
| 839 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 840 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 841 |
+
# Flatten the tokens
|
| 842 |
+
loss_fct = CrossEntropyLoss()
|
| 843 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 844 |
+
shift_labels = shift_labels.view(-1)
|
| 845 |
+
# Enable model parallelism
|
| 846 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 847 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 848 |
+
|
| 849 |
+
if not return_dict:
|
| 850 |
+
output = (logits,) + outputs[1:]
|
| 851 |
+
return (loss,) + output if loss is not None else output
|
| 852 |
+
|
| 853 |
+
return CausalLMOutputWithPast(
|
| 854 |
+
loss=loss,
|
| 855 |
+
logits=logits,
|
| 856 |
+
past_key_values=outputs.past_key_values,
|
| 857 |
+
hidden_states=outputs.hidden_states,
|
| 858 |
+
attentions=outputs.attentions,
|
| 859 |
+
)
|
| 860 |
+
|
| 861 |
+
def chat(self, tokenizer, messages: List[dict], streaming=False,generation_config: Optional[GenerationConfig]=None):
|
| 862 |
+
generation_config = generation_config or self.generation_config
|
| 863 |
+
input_tokens = build_chat_input(tokenizer,messages)
|
| 864 |
+
input_ids = torch.LongTensor([input_tokens]).to(self.device)
|
| 865 |
+
|
| 866 |
+
if streaming:
|
| 867 |
+
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 868 |
+
Thread(target=self.generate, kwargs=dict(
|
| 869 |
+
inputs=input_ids, streamer=streamer,
|
| 870 |
+
generation_config=generation_config,
|
| 871 |
+
)).start()
|
| 872 |
+
return streamer
|
| 873 |
+
else:
|
| 874 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
| 875 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
| 876 |
+
return response
|
| 877 |
+
|
| 878 |
+
def prepare_inputs_for_generation(
|
| 879 |
+
self,
|
| 880 |
+
input_ids,
|
| 881 |
+
past_key_values=None,
|
| 882 |
+
attention_mask=None,
|
| 883 |
+
inputs_embeds=None,
|
| 884 |
+
**kwargs,
|
| 885 |
+
):
|
| 886 |
+
if past_key_values:
|
| 887 |
+
input_ids = input_ids[:, -1:]
|
| 888 |
+
|
| 889 |
+
position_ids = kwargs.get("position_ids", None)
|
| 890 |
+
if attention_mask is not None and position_ids is None:
|
| 891 |
+
# create position_ids on the fly for batch generation
|
| 892 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 893 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 894 |
+
if past_key_values:
|
| 895 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 896 |
+
|
| 897 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 898 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 899 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 900 |
+
else:
|
| 901 |
+
model_inputs = {"input_ids": input_ids}
|
| 902 |
+
|
| 903 |
+
model_inputs.update(
|
| 904 |
+
{
|
| 905 |
+
"position_ids": position_ids,
|
| 906 |
+
"past_key_values": past_key_values,
|
| 907 |
+
"use_cache": kwargs.get("use_cache"),
|
| 908 |
+
"attention_mask": attention_mask,
|
| 909 |
+
}
|
| 910 |
+
)
|
| 911 |
+
return model_inputs
|
| 912 |
+
|
| 913 |
+
@staticmethod
|
| 914 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 915 |
+
reordered_past = ()
|
| 916 |
+
for layer_past in past_key_values:
|
| 917 |
+
reordered_past += (
|
| 918 |
+
tuple(
|
| 919 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 920 |
+
for past_state in layer_past
|
| 921 |
+
),
|
| 922 |
+
)
|
| 923 |
+
return reordered_past
|
| 924 |
+
|
| 925 |
+
|
| 926 |
+
@add_start_docstrings(
|
| 927 |
+
"""
|
| 928 |
+
The Yi Model transformer with a sequence classification head on top (linear layer).
|
| 929 |
+
|
| 930 |
+
[`YiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 931 |
+
(e.g. GPT-2) do.
|
| 932 |
+
|
| 933 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 934 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 935 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 936 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 937 |
+
each row of the batch).
|
| 938 |
+
""",
|
| 939 |
+
Yi_START_DOCSTRING,
|
| 940 |
+
)
|
| 941 |
+
class YiForSequenceClassification(YiPreTrainedModel):
|
| 942 |
+
def __init__(self, config):
|
| 943 |
+
super().__init__(config)
|
| 944 |
+
self.num_labels = config.num_labels
|
| 945 |
+
self.model = YiModel(config)
|
| 946 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 947 |
+
|
| 948 |
+
# Initialize weights and apply final processing
|
| 949 |
+
self.post_init()
|
| 950 |
+
|
| 951 |
+
def get_input_embeddings(self):
|
| 952 |
+
return self.model.embed_tokens
|
| 953 |
+
|
| 954 |
+
def set_input_embeddings(self, value):
|
| 955 |
+
self.model.embed_tokens = value
|
| 956 |
+
|
| 957 |
+
@add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
|
| 958 |
+
def forward(
|
| 959 |
+
self,
|
| 960 |
+
input_ids: torch.LongTensor = None,
|
| 961 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 962 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 963 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 964 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 965 |
+
labels: Optional[torch.LongTensor] = None,
|
| 966 |
+
use_cache: Optional[bool] = None,
|
| 967 |
+
output_attentions: Optional[bool] = None,
|
| 968 |
+
output_hidden_states: Optional[bool] = None,
|
| 969 |
+
return_dict: Optional[bool] = None,
|
| 970 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 971 |
+
r"""
|
| 972 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 973 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 974 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 975 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 976 |
+
"""
|
| 977 |
+
return_dict = (
|
| 978 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
transformer_outputs = self.model(
|
| 982 |
+
input_ids,
|
| 983 |
+
attention_mask=attention_mask,
|
| 984 |
+
position_ids=position_ids,
|
| 985 |
+
past_key_values=past_key_values,
|
| 986 |
+
inputs_embeds=inputs_embeds,
|
| 987 |
+
use_cache=use_cache,
|
| 988 |
+
output_attentions=output_attentions,
|
| 989 |
+
output_hidden_states=output_hidden_states,
|
| 990 |
+
return_dict=return_dict,
|
| 991 |
+
)
|
| 992 |
+
hidden_states = transformer_outputs[0]
|
| 993 |
+
logits = self.score(hidden_states)
|
| 994 |
+
|
| 995 |
+
if input_ids is not None:
|
| 996 |
+
batch_size = input_ids.shape[0]
|
| 997 |
+
else:
|
| 998 |
+
batch_size = inputs_embeds.shape[0]
|
| 999 |
+
|
| 1000 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1001 |
+
raise ValueError(
|
| 1002 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1003 |
+
)
|
| 1004 |
+
if self.config.pad_token_id is None:
|
| 1005 |
+
sequence_lengths = -1
|
| 1006 |
+
else:
|
| 1007 |
+
if input_ids is not None:
|
| 1008 |
+
sequence_lengths = (
|
| 1009 |
+
torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1
|
| 1010 |
+
).to(logits.device)
|
| 1011 |
+
else:
|
| 1012 |
+
sequence_lengths = -1
|
| 1013 |
+
|
| 1014 |
+
pooled_logits = logits[
|
| 1015 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1016 |
+
]
|
| 1017 |
+
|
| 1018 |
+
loss = None
|
| 1019 |
+
if labels is not None:
|
| 1020 |
+
labels = labels.to(logits.device)
|
| 1021 |
+
if self.config.problem_type is None:
|
| 1022 |
+
if self.num_labels == 1:
|
| 1023 |
+
self.config.problem_type = "regression"
|
| 1024 |
+
elif self.num_labels > 1 and (
|
| 1025 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1026 |
+
):
|
| 1027 |
+
self.config.problem_type = "single_label_classification"
|
| 1028 |
+
else:
|
| 1029 |
+
self.config.problem_type = "multi_label_classification"
|
| 1030 |
+
|
| 1031 |
+
if self.config.problem_type == "regression":
|
| 1032 |
+
loss_fct = MSELoss()
|
| 1033 |
+
if self.num_labels == 1:
|
| 1034 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1035 |
+
else:
|
| 1036 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1037 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1038 |
+
loss_fct = CrossEntropyLoss()
|
| 1039 |
+
loss = loss_fct(
|
| 1040 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1041 |
+
)
|
| 1042 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1043 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1044 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1045 |
+
if not return_dict:
|
| 1046 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1047 |
+
return ((loss,) + output) if loss is not None else output
|
| 1048 |
+
|
| 1049 |
+
return SequenceClassifierOutputWithPast(
|
| 1050 |
+
loss=loss,
|
| 1051 |
+
logits=pooled_logits,
|
| 1052 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1053 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1054 |
+
attentions=transformer_outputs.attentions,
|
| 1055 |
+
)
|
pytorch_model-00001-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5fbf8b9f4763318d67a98722aa411f94b8429817c78411a3fdb0603fca5b5f0f
|
| 3 |
+
size 9975359126
|
pytorch_model-00002-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99f9a7748c3a8defa74b9e565a4048927a3a15e32e990d7ca70a72a7722b29f3
|
| 3 |
+
size 9909328186
|
pytorch_model-00003-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:363b4bcadaef5d9f639e41974b5e21f55b230bcd5545ce3603bdbea249237e57
|
| 3 |
+
size 9747818814
|
pytorch_model-00004-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6243cf0eec1e981975711bee96666ad0cde244a2cfbed8c5fe6d511454145c16
|
| 3 |
+
size 9747848138
|
pytorch_model-00005-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:678c75b46d0807600a2073827c244fb1fe6cf659223cb3a0439d953e0f5ae592
|
| 3 |
+
size 9747848198
|
pytorch_model-00006-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c88e2650844d8761d879e0a761159ab8432479dd1f23e4457ab56910d313bc4
|
| 3 |
+
size 9938689066
|
pytorch_model-00007-of-00007.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d9a0b74f568ef030626194d61e5d60c02a8b402d36b049f20017bb4a503c276
|
| 3 |
+
size 9711130536
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 68777834496
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00007-of-00007.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00007.bin",
|
| 8 |
+
"model.layers.0.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 9 |
+
"model.layers.0.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 10 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 11 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 12 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 17 |
+
"model.layers.1.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 18 |
+
"model.layers.1.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 26 |
+
"model.layers.10.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 27 |
+
"model.layers.10.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 28 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 29 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 30 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 35 |
+
"model.layers.11.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 36 |
+
"model.layers.11.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 37 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 38 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 39 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 44 |
+
"model.layers.12.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 45 |
+
"model.layers.12.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 46 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 47 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 48 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 53 |
+
"model.layers.13.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 54 |
+
"model.layers.13.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 55 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 56 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 57 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 62 |
+
"model.layers.14.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 63 |
+
"model.layers.14.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 64 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 65 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 66 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 71 |
+
"model.layers.15.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 72 |
+
"model.layers.15.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 73 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 74 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 75 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 80 |
+
"model.layers.16.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 81 |
+
"model.layers.16.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 82 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 83 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 84 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 89 |
+
"model.layers.17.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 90 |
+
"model.layers.17.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 91 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 92 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 93 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 98 |
+
"model.layers.18.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 99 |
+
"model.layers.18.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 100 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 101 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 102 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 107 |
+
"model.layers.19.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 108 |
+
"model.layers.19.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 109 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 110 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 111 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 116 |
+
"model.layers.2.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 117 |
+
"model.layers.2.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 118 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 119 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 120 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 125 |
+
"model.layers.20.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 126 |
+
"model.layers.20.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 127 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 128 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 129 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 134 |
+
"model.layers.21.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 135 |
+
"model.layers.21.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 136 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 137 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 138 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 143 |
+
"model.layers.22.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 144 |
+
"model.layers.22.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 145 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 146 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 147 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 152 |
+
"model.layers.23.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 153 |
+
"model.layers.23.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 154 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 155 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 156 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 161 |
+
"model.layers.24.ln1.weight": "pytorch_model-00003-of-00007.bin",
|
| 162 |
+
"model.layers.24.ln2.weight": "pytorch_model-00003-of-00007.bin",
|
| 163 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 164 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 165 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 170 |
+
"model.layers.25.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 171 |
+
"model.layers.25.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 172 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 173 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 174 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
| 179 |
+
"model.layers.26.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 180 |
+
"model.layers.26.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 181 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 182 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 183 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 188 |
+
"model.layers.27.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 189 |
+
"model.layers.27.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 190 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 191 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 192 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 197 |
+
"model.layers.28.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 198 |
+
"model.layers.28.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 199 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 200 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 201 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 206 |
+
"model.layers.29.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 207 |
+
"model.layers.29.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 208 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 209 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 210 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 215 |
+
"model.layers.3.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 216 |
+
"model.layers.3.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 217 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 218 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 219 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 224 |
+
"model.layers.30.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 225 |
+
"model.layers.30.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 226 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 227 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 228 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 233 |
+
"model.layers.31.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 234 |
+
"model.layers.31.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 235 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 236 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 237 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 242 |
+
"model.layers.32.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 243 |
+
"model.layers.32.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 244 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 245 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 246 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 251 |
+
"model.layers.33.ln1.weight": "pytorch_model-00004-of-00007.bin",
|
| 252 |
+
"model.layers.33.ln2.weight": "pytorch_model-00004-of-00007.bin",
|
| 253 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 254 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 255 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 260 |
+
"model.layers.34.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 261 |
+
"model.layers.34.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 262 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 263 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 264 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
| 269 |
+
"model.layers.35.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 270 |
+
"model.layers.35.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 271 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 272 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 273 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 278 |
+
"model.layers.36.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 279 |
+
"model.layers.36.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 280 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 281 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 282 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 287 |
+
"model.layers.37.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 288 |
+
"model.layers.37.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 289 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 290 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 291 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 296 |
+
"model.layers.38.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 297 |
+
"model.layers.38.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 298 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 299 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 300 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 305 |
+
"model.layers.39.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 306 |
+
"model.layers.39.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 307 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 308 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 309 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 314 |
+
"model.layers.4.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 315 |
+
"model.layers.4.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 316 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 317 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 318 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 323 |
+
"model.layers.40.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 324 |
+
"model.layers.40.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 325 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 326 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 327 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 328 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 329 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 330 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 331 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 332 |
+
"model.layers.41.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 333 |
+
"model.layers.41.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 334 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 335 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 336 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 337 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 338 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 339 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 340 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 341 |
+
"model.layers.42.ln1.weight": "pytorch_model-00005-of-00007.bin",
|
| 342 |
+
"model.layers.42.ln2.weight": "pytorch_model-00005-of-00007.bin",
|
| 343 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 344 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 345 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 346 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 347 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 348 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 349 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 350 |
+
"model.layers.43.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 351 |
+
"model.layers.43.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 352 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 353 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 354 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 355 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 356 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 357 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 358 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
| 359 |
+
"model.layers.44.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 360 |
+
"model.layers.44.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 361 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 362 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 363 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 364 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 365 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 366 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 367 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 368 |
+
"model.layers.45.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 369 |
+
"model.layers.45.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 370 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 371 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 372 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 373 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 374 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 375 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 376 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 377 |
+
"model.layers.46.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 378 |
+
"model.layers.46.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 379 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 380 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 381 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 382 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 383 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 384 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 385 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 386 |
+
"model.layers.47.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 387 |
+
"model.layers.47.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 388 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 389 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 390 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 391 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 392 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 393 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 394 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 395 |
+
"model.layers.48.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 396 |
+
"model.layers.48.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 397 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 398 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 399 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 400 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 401 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 402 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 403 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 404 |
+
"model.layers.49.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 405 |
+
"model.layers.49.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 406 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 407 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 408 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 409 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 410 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 411 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 412 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 413 |
+
"model.layers.5.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 414 |
+
"model.layers.5.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 415 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 416 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 417 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 418 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 419 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 420 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 421 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 422 |
+
"model.layers.50.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 423 |
+
"model.layers.50.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 424 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 425 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 426 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 427 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 428 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 429 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 430 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 431 |
+
"model.layers.51.ln1.weight": "pytorch_model-00006-of-00007.bin",
|
| 432 |
+
"model.layers.51.ln2.weight": "pytorch_model-00006-of-00007.bin",
|
| 433 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 434 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 435 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 436 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 437 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 438 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 439 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 440 |
+
"model.layers.52.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 441 |
+
"model.layers.52.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 442 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 443 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 444 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 445 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 446 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 447 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 448 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
| 449 |
+
"model.layers.53.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 450 |
+
"model.layers.53.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 451 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 452 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 453 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 454 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 455 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 456 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 457 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 458 |
+
"model.layers.54.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 459 |
+
"model.layers.54.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 460 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 461 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 462 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 463 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 464 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 465 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 466 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 467 |
+
"model.layers.55.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 468 |
+
"model.layers.55.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 469 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 470 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 471 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 472 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 473 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 474 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 475 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 476 |
+
"model.layers.56.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 477 |
+
"model.layers.56.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 478 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 479 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 480 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 481 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 482 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 483 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 484 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 485 |
+
"model.layers.57.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 486 |
+
"model.layers.57.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 487 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 488 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 489 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 490 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 491 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 492 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 493 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 494 |
+
"model.layers.58.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 495 |
+
"model.layers.58.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 496 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 497 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 498 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 499 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 500 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 501 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 502 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 503 |
+
"model.layers.59.ln1.weight": "pytorch_model-00007-of-00007.bin",
|
| 504 |
+
"model.layers.59.ln2.weight": "pytorch_model-00007-of-00007.bin",
|
| 505 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 506 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 507 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 508 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 509 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 510 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 511 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
| 512 |
+
"model.layers.6.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 513 |
+
"model.layers.6.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 514 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 515 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 516 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 517 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 518 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 519 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 520 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 521 |
+
"model.layers.7.ln1.weight": "pytorch_model-00001-of-00007.bin",
|
| 522 |
+
"model.layers.7.ln2.weight": "pytorch_model-00001-of-00007.bin",
|
| 523 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 524 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 525 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 526 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 527 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 528 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 529 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 530 |
+
"model.layers.8.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 531 |
+
"model.layers.8.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 532 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 533 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 534 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 535 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 536 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 537 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 538 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
| 539 |
+
"model.layers.9.ln1.weight": "pytorch_model-00002-of-00007.bin",
|
| 540 |
+
"model.layers.9.ln2.weight": "pytorch_model-00002-of-00007.bin",
|
| 541 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 542 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 543 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 544 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 545 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 546 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 547 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
| 548 |
+
"model.norm.weight": "pytorch_model-00007-of-00007.bin"
|
| 549 |
+
}
|
| 550 |
+
}
|
tokenization_yi.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from shutil import copyfile
|
| 3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 4 |
+
|
| 5 |
+
import sentencepiece as spm
|
| 6 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 7 |
+
from transformers.utils import logging
|
| 8 |
+
|
| 9 |
+
logger = logging.get_logger(__name__)
|
| 10 |
+
|
| 11 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
| 12 |
+
|
| 13 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 14 |
+
"vocab_file": {},
|
| 15 |
+
"tokenizer_file": {},
|
| 16 |
+
}
|
| 17 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class YiTokenizer(PreTrainedTokenizer):
|
| 21 |
+
"""
|
| 22 |
+
Construct a Yi tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
vocab_file (`str`):
|
| 26 |
+
Path to the vocabulary file.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 30 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 31 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 32 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 33 |
+
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
vocab_file,
|
| 37 |
+
unk_token="<unk>",
|
| 38 |
+
bos_token="<|startoftext|>",
|
| 39 |
+
eos_token="<|endoftext|>",
|
| 40 |
+
pad_token="<unk>",
|
| 41 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 42 |
+
add_bos_token=True,
|
| 43 |
+
add_eos_token=False,
|
| 44 |
+
clean_up_tokenization_spaces=False,
|
| 45 |
+
**kwargs,
|
| 46 |
+
):
|
| 47 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 48 |
+
bos_token = (
|
| 49 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
| 50 |
+
if isinstance(bos_token, str)
|
| 51 |
+
else bos_token
|
| 52 |
+
)
|
| 53 |
+
eos_token = (
|
| 54 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
| 55 |
+
if isinstance(eos_token, str)
|
| 56 |
+
else eos_token
|
| 57 |
+
)
|
| 58 |
+
unk_token = (
|
| 59 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
| 60 |
+
if isinstance(unk_token, str)
|
| 61 |
+
else unk_token
|
| 62 |
+
)
|
| 63 |
+
pad_token = (
|
| 64 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
| 65 |
+
if isinstance(pad_token, str)
|
| 66 |
+
else pad_token
|
| 67 |
+
)
|
| 68 |
+
self.vocab_file = vocab_file
|
| 69 |
+
self.add_bos_token = add_bos_token
|
| 70 |
+
self.add_eos_token = add_eos_token
|
| 71 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 72 |
+
self.sp_model.Load(vocab_file)
|
| 73 |
+
super().__init__(
|
| 74 |
+
bos_token=bos_token,
|
| 75 |
+
eos_token=eos_token,
|
| 76 |
+
unk_token=unk_token,
|
| 77 |
+
pad_token=pad_token,
|
| 78 |
+
add_bos_token=add_bos_token,
|
| 79 |
+
add_eos_token=add_eos_token,
|
| 80 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 81 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 82 |
+
**kwargs,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def __getstate__(self):
|
| 86 |
+
state = self.__dict__.copy()
|
| 87 |
+
state["sp_model"] = None
|
| 88 |
+
return state
|
| 89 |
+
|
| 90 |
+
def __setstate__(self, d):
|
| 91 |
+
self.__dict__ = d
|
| 92 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 93 |
+
self.sp_model.Load(self.vocab_file)
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def vocab_size(self):
|
| 97 |
+
"""Returns vocab size"""
|
| 98 |
+
return self.sp_model.get_piece_size()
|
| 99 |
+
|
| 100 |
+
def get_vocab(self):
|
| 101 |
+
"""Returns vocab as a dict"""
|
| 102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 103 |
+
vocab.update(self.added_tokens_encoder)
|
| 104 |
+
return vocab
|
| 105 |
+
|
| 106 |
+
def _tokenize(self, text):
|
| 107 |
+
"""Returns a tokenized string."""
|
| 108 |
+
return self.sp_model.encode(text, out_type=str)
|
| 109 |
+
|
| 110 |
+
def _convert_token_to_id(self, token):
|
| 111 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 112 |
+
return self.sp_model.piece_to_id(token)
|
| 113 |
+
|
| 114 |
+
def _convert_id_to_token(self, index):
|
| 115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 116 |
+
token = self.sp_model.IdToPiece(index)
|
| 117 |
+
return token
|
| 118 |
+
|
| 119 |
+
def convert_tokens_to_string(self, tokens):
|
| 120 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 121 |
+
current_sub_tokens = []
|
| 122 |
+
out_string = ""
|
| 123 |
+
prev_is_special = False
|
| 124 |
+
for i, token in enumerate(tokens):
|
| 125 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 126 |
+
if token in self.all_special_tokens:
|
| 127 |
+
if not prev_is_special and i != 0:
|
| 128 |
+
out_string += " "
|
| 129 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 130 |
+
prev_is_special = True
|
| 131 |
+
current_sub_tokens = []
|
| 132 |
+
else:
|
| 133 |
+
current_sub_tokens.append(token)
|
| 134 |
+
prev_is_special = False
|
| 135 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 136 |
+
return out_string
|
| 137 |
+
|
| 138 |
+
def save_vocabulary(
|
| 139 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
| 140 |
+
) -> Tuple[str]:
|
| 141 |
+
"""
|
| 142 |
+
Save the vocabulary and special tokens file to a directory.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
save_directory (`str`):
|
| 146 |
+
The directory in which to save the vocabulary.
|
| 147 |
+
|
| 148 |
+
Returns:
|
| 149 |
+
`Tuple(str)`: Paths to the files saved.
|
| 150 |
+
"""
|
| 151 |
+
if not os.path.isdir(save_directory):
|
| 152 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 153 |
+
return
|
| 154 |
+
out_vocab_file = os.path.join(
|
| 155 |
+
save_directory,
|
| 156 |
+
(filename_prefix + "-" if filename_prefix else "")
|
| 157 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
| 161 |
+
out_vocab_file
|
| 162 |
+
) and os.path.isfile(self.vocab_file):
|
| 163 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 164 |
+
elif not os.path.isfile(self.vocab_file):
|
| 165 |
+
with open(out_vocab_file, "wb") as fi:
|
| 166 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 167 |
+
fi.write(content_spiece_model)
|
| 168 |
+
|
| 169 |
+
return (out_vocab_file,)
|
| 170 |
+
|
| 171 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 172 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 173 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 174 |
+
|
| 175 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
| 176 |
+
|
| 177 |
+
if token_ids_1 is not None:
|
| 178 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
| 179 |
+
|
| 180 |
+
return output
|
| 181 |
+
|
| 182 |
+
def get_special_tokens_mask(
|
| 183 |
+
self,
|
| 184 |
+
token_ids_0: List[int],
|
| 185 |
+
token_ids_1: Optional[List[int]] = None,
|
| 186 |
+
already_has_special_tokens: bool = False,
|
| 187 |
+
) -> List[int]:
|
| 188 |
+
"""
|
| 189 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 190 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
token_ids_0 (`List[int]`):
|
| 194 |
+
List of IDs.
|
| 195 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 196 |
+
Optional second list of IDs for sequence pairs.
|
| 197 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 198 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 202 |
+
"""
|
| 203 |
+
if already_has_special_tokens:
|
| 204 |
+
return super().get_special_tokens_mask(
|
| 205 |
+
token_ids_0=token_ids_0,
|
| 206 |
+
token_ids_1=token_ids_1,
|
| 207 |
+
already_has_special_tokens=True,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
bos_token_id = [1] if self.add_bos_token else []
|
| 211 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 212 |
+
|
| 213 |
+
if token_ids_1 is None:
|
| 214 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
| 215 |
+
return (
|
| 216 |
+
bos_token_id
|
| 217 |
+
+ ([0] * len(token_ids_0))
|
| 218 |
+
+ eos_token_id
|
| 219 |
+
+ bos_token_id
|
| 220 |
+
+ ([0] * len(token_ids_1))
|
| 221 |
+
+ eos_token_id
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
def create_token_type_ids_from_sequences(
|
| 225 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 226 |
+
) -> List[int]:
|
| 227 |
+
"""
|
| 228 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 229 |
+
sequence pair mask has the following format:
|
| 230 |
+
|
| 231 |
+
```
|
| 232 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 233 |
+
| first sequence | second sequence |
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
token_ids_0 (`List[int]`):
|
| 240 |
+
List of ids.
|
| 241 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 242 |
+
Optional second list of IDs for sequence pairs.
|
| 243 |
+
|
| 244 |
+
Returns:
|
| 245 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 246 |
+
"""
|
| 247 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 248 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 249 |
+
|
| 250 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
| 251 |
+
|
| 252 |
+
if token_ids_1 is not None:
|
| 253 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
| 254 |
+
|
| 255 |
+
return output
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
|
| 3 |
+
size 1033105
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoTokenizer": ["tokenization_yi.YiTokenizer", null]
|
| 4 |
+
},
|
| 5 |
+
"add_bos_token": false,
|
| 6 |
+
"add_eos_token": false,
|
| 7 |
+
"model_max_length": 4096,
|
| 8 |
+
"tokenizer_class": "YiTokenizer"
|
| 9 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e2279e36e673c0a04fcd4bca602006295cf4895fc79b7a02bee217ea28b0550
|
| 3 |
+
size 6776
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage == 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
| 147 |
+
|
| 148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 152 |
+
|
| 153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 155 |
+
# use the max of the partition_count to get the dp world_size.
|
| 156 |
+
|
| 157 |
+
if type(world_size) is list:
|
| 158 |
+
world_size = max(world_size)
|
| 159 |
+
|
| 160 |
+
if world_size != total_files:
|
| 161 |
+
raise ValueError(
|
| 162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# the groups are named differently in each stage
|
| 167 |
+
if zero_stage == 2:
|
| 168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 169 |
+
elif zero_stage == 3:
|
| 170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 171 |
+
else:
|
| 172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 173 |
+
|
| 174 |
+
if zero_stage == 2:
|
| 175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 176 |
+
elif zero_stage == 3:
|
| 177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 179 |
+
#
|
| 180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 182 |
+
|
| 183 |
+
fp32_flat_groups = [
|
| 184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 185 |
+
]
|
| 186 |
+
|
| 187 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 191 |
+
"""
|
| 192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 196 |
+
|
| 197 |
+
"""
|
| 198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 199 |
+
|
| 200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 203 |
+
|
| 204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 205 |
+
|
| 206 |
+
zero_model_states = parse_model_states(model_files)
|
| 207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 208 |
+
|
| 209 |
+
if zero_stage == 2:
|
| 210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 211 |
+
elif zero_stage == 3:
|
| 212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 248 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 249 |
+
|
| 250 |
+
# Reconstruction protocol:
|
| 251 |
+
#
|
| 252 |
+
# XXX: document this
|
| 253 |
+
|
| 254 |
+
if debug:
|
| 255 |
+
for i in range(world_size):
|
| 256 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 258 |
+
|
| 259 |
+
# XXX: memory usage doubles here (zero2)
|
| 260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 261 |
+
merged_single_partition_of_fp32_groups = []
|
| 262 |
+
for i in range(num_param_groups):
|
| 263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 266 |
+
avail_numel = sum(
|
| 267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 272 |
+
# not asserting if there is a mismatch due to possible padding
|
| 273 |
+
print(f"Have {avail_numel} numels to process.")
|
| 274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 275 |
+
|
| 276 |
+
# params
|
| 277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 278 |
+
# out-of-core computing solution
|
| 279 |
+
total_numel = 0
|
| 280 |
+
total_params = 0
|
| 281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 282 |
+
offset = 0
|
| 283 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 284 |
+
for name, shape in shapes.items():
|
| 285 |
+
|
| 286 |
+
unpartitioned_numel = shape.numel()
|
| 287 |
+
total_numel += unpartitioned_numel
|
| 288 |
+
total_params += 1
|
| 289 |
+
|
| 290 |
+
if debug:
|
| 291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 293 |
+
offset += unpartitioned_numel
|
| 294 |
+
|
| 295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 299 |
+
align_to = 2 * world_size
|
| 300 |
+
|
| 301 |
+
def zero2_align(x):
|
| 302 |
+
return align_to * math.ceil(x / align_to)
|
| 303 |
+
|
| 304 |
+
if debug:
|
| 305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 306 |
+
|
| 307 |
+
offset = zero2_align(offset)
|
| 308 |
+
avail_numel = zero2_align(avail_numel)
|
| 309 |
+
|
| 310 |
+
if debug:
|
| 311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 312 |
+
|
| 313 |
+
# Sanity check
|
| 314 |
+
if offset != avail_numel:
|
| 315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 316 |
+
|
| 317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 321 |
+
state_dict = OrderedDict()
|
| 322 |
+
|
| 323 |
+
# buffers
|
| 324 |
+
buffers = zero_model_states[0].buffers
|
| 325 |
+
state_dict.update(buffers)
|
| 326 |
+
if debug:
|
| 327 |
+
print(f"added {len(buffers)} buffers")
|
| 328 |
+
|
| 329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 330 |
+
|
| 331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 332 |
+
|
| 333 |
+
# recover shared parameters
|
| 334 |
+
for pair in zero_model_states[0].shared_params:
|
| 335 |
+
if pair[1] in state_dict:
|
| 336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 337 |
+
|
| 338 |
+
return state_dict
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 342 |
+
remainder = unpartitioned_numel % world_size
|
| 343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 345 |
+
return partitioned_numel, padding_numel
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 350 |
+
return
|
| 351 |
+
|
| 352 |
+
if debug:
|
| 353 |
+
for i in range(world_size):
|
| 354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 356 |
+
|
| 357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 358 |
+
wanted_params = len(frozen_param_shapes)
|
| 359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 363 |
+
|
| 364 |
+
total_params = 0
|
| 365 |
+
total_numel = 0
|
| 366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 367 |
+
total_params += 1
|
| 368 |
+
unpartitioned_numel = shape.numel()
|
| 369 |
+
total_numel += unpartitioned_numel
|
| 370 |
+
|
| 371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 373 |
+
|
| 374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 375 |
+
|
| 376 |
+
if debug:
|
| 377 |
+
print(
|
| 378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 385 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 389 |
+
|
| 390 |
+
# merge list of dicts, preserving order
|
| 391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
for i in range(world_size):
|
| 395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 396 |
+
|
| 397 |
+
wanted_params = len(param_shapes)
|
| 398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 399 |
+
# not asserting if there is a mismatch due to possible padding
|
| 400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 403 |
+
|
| 404 |
+
# params
|
| 405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 406 |
+
# out-of-core computing solution
|
| 407 |
+
offset = 0
|
| 408 |
+
total_numel = 0
|
| 409 |
+
total_params = 0
|
| 410 |
+
for name, shape in param_shapes.items():
|
| 411 |
+
|
| 412 |
+
unpartitioned_numel = shape.numel()
|
| 413 |
+
total_numel += unpartitioned_numel
|
| 414 |
+
total_params += 1
|
| 415 |
+
|
| 416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 417 |
+
|
| 418 |
+
if debug:
|
| 419 |
+
print(
|
| 420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# XXX: memory usage doubles here
|
| 424 |
+
state_dict[name] = torch.cat(
|
| 425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 427 |
+
offset += partitioned_numel
|
| 428 |
+
|
| 429 |
+
offset *= world_size
|
| 430 |
+
|
| 431 |
+
# Sanity check
|
| 432 |
+
if offset != avail_numel:
|
| 433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 434 |
+
|
| 435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 439 |
+
state_dict = OrderedDict()
|
| 440 |
+
|
| 441 |
+
# buffers
|
| 442 |
+
buffers = zero_model_states[0].buffers
|
| 443 |
+
state_dict.update(buffers)
|
| 444 |
+
if debug:
|
| 445 |
+
print(f"added {len(buffers)} buffers")
|
| 446 |
+
|
| 447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 448 |
+
|
| 449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 450 |
+
|
| 451 |
+
# recover shared parameters
|
| 452 |
+
for pair in zero_model_states[0].shared_params:
|
| 453 |
+
if pair[1] in state_dict:
|
| 454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 455 |
+
|
| 456 |
+
return state_dict
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 460 |
+
"""
|
| 461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 463 |
+
via a model hub.
|
| 464 |
+
|
| 465 |
+
Args:
|
| 466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 468 |
+
|
| 469 |
+
Returns:
|
| 470 |
+
- pytorch ``state_dict``
|
| 471 |
+
|
| 472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 474 |
+
the checkpoint.
|
| 475 |
+
|
| 476 |
+
A typical usage might be ::
|
| 477 |
+
|
| 478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 479 |
+
# do the training and checkpoint saving
|
| 480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 481 |
+
model = model.cpu() # move to cpu
|
| 482 |
+
model.load_state_dict(state_dict)
|
| 483 |
+
# submit to model hub or save the model to share with others
|
| 484 |
+
|
| 485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 488 |
+
|
| 489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 490 |
+
|
| 491 |
+
"""
|
| 492 |
+
if tag is None:
|
| 493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 494 |
+
if os.path.isfile(latest_path):
|
| 495 |
+
with open(latest_path, 'r') as fd:
|
| 496 |
+
tag = fd.read().strip()
|
| 497 |
+
else:
|
| 498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 499 |
+
|
| 500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 501 |
+
|
| 502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 504 |
+
|
| 505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 509 |
+
"""
|
| 510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 512 |
+
|
| 513 |
+
Args:
|
| 514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 517 |
+
"""
|
| 518 |
+
|
| 519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 521 |
+
torch.save(state_dict, output_file)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 525 |
+
"""
|
| 526 |
+
1. Put the provided model to cpu
|
| 527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 528 |
+
3. Load it into the provided model
|
| 529 |
+
|
| 530 |
+
Args:
|
| 531 |
+
- ``model``: the model object to update
|
| 532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 534 |
+
|
| 535 |
+
Returns:
|
| 536 |
+
- ``model`: modified model
|
| 537 |
+
|
| 538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 540 |
+
conveniently placed for you in the checkpoint folder.
|
| 541 |
+
|
| 542 |
+
A typical usage might be ::
|
| 543 |
+
|
| 544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 546 |
+
# submit to model hub or save the model to share with others
|
| 547 |
+
|
| 548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 551 |
+
|
| 552 |
+
"""
|
| 553 |
+
logger.info(f"Extracting fp32 weights")
|
| 554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 555 |
+
|
| 556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 557 |
+
model = model.cpu()
|
| 558 |
+
model.load_state_dict(state_dict, strict=False)
|
| 559 |
+
|
| 560 |
+
return model
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
if __name__ == "__main__":
|
| 564 |
+
|
| 565 |
+
parser = argparse.ArgumentParser()
|
| 566 |
+
parser.add_argument("checkpoint_dir",
|
| 567 |
+
type=str,
|
| 568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 569 |
+
parser.add_argument(
|
| 570 |
+
"output_file",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 574 |
+
args = parser.parse_args()
|
| 575 |
+
|
| 576 |
+
debug = args.debug
|
| 577 |
+
|
| 578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|