File size: 2,829 Bytes
d59585b da59973 c5d1215 da59973 2f2aa70 da59973 df3c408 da59973 277efb1 da59973 d7ef1fd da59973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
tags:
- text-to-audio
- controlnet
---
<img src="https://github.com/haidog-yaqub/EzAudio/blob/main/arts/ezaudio.png?raw=true">
# EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer
🟣 EzAudio is a diffusion-based text-to-audio generation model. Designed for real-world audio applications, EzAudio brings together high-quality audio synthesis with lower computational demands.
🎛 Play with EzAudio for text-to-audio generation, editing, and inpainting: [EzAudio](https://huggingface.co/spaces/OpenSound/EzAudio)
🎮 EzAudio-ControlNet is available: [EzAudio-ControlNet](https://huggingface.co/spaces/OpenSound/EzAudio-ControlNet)
We want to thank Hugging Face Space and Gradio for providing incredible demo platform.
## Installation
Clone the repository:
```
git clone [email protected]:haidog-yaqub/EzAudio.git
```
Install the dependencies:
```
cd EzAudio
pip install -r requirements.txt
```
Download checkponts from: [https://huggingface.co/OpenSound/EzAudio](https://huggingface.co/OpenSound/EzAudio/tree/main)
## Usage
You can use the model with the following code:
```python
from api.ezaudio import load_models, generate_audio
# model and config paths
config_name = 'ckpts/ezaudio-xl.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
vae_path = 'ckpts/vae/1m.pt'
# save_path = 'output/'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load model
(autoencoder, unet, tokenizer,
text_encoder, noise_scheduler, params) = load_models(config_name, ckpt_path,
vae_path, device)
prompt = "a dog barking in the distance"
sr, audio = generate_audio(prompt, autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params, device)
```
## Todo
- [x] Release Gradio Demo along with checkpoints [EzAudio Space](https://huggingface.co/spaces/OpenSound/EzAudio)
- [x] Release ControlNet Demo along with checkpoints [EzAudio ControlNet Space](https://huggingface.co/spaces/OpenSound/EzAudio-ControlNet)
- [x] Release inference code
- [ ] Release checkpoints for stage1 and stage2
- [ ] Release training pipeline and dataset
## Reference
If you find the code useful for your research, please consider citing:
```bibtex
@article{hai2024ezaudio,
title={EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer},
author={Hai, Jiarui and Xu, Yong and Zhang, Hao and Li, Chenxing and Wang, Helin and Elhilali, Mounya and Yu, Dong},
journal={arXiv preprint arXiv:2409.10819},
year={2024}
}
```
## Acknowledgement
Some code are borrowed from or inspired by: [U-Vit](https://github.com/baofff/U-ViT), [Pixel-Art](https://github.com/PixArt-alpha/PixArt-alpha), [Huyuan-DiT](https://github.com/Tencent/HunyuanDiT), and [Stable Audio](https://github.com/Stability-AI/stable-audio-tools).
|