OpenNLPLab
commited on
Upload modeling_transnormer.py
Browse files- modeling_transnormer.py +155 -163
modeling_transnormer.py
CHANGED
@@ -53,8 +53,13 @@ logger = logging.get_logger(__name__)
|
|
53 |
|
54 |
_CONFIG_FOR_DOC = "TransnormerConfig"
|
55 |
|
|
|
56 |
use_triton = eval(os.environ.get("use_triton", default="True"))
|
57 |
debug = eval(os.environ.get("debug", default="False"))
|
|
|
|
|
|
|
|
|
58 |
|
59 |
if use_triton:
|
60 |
try:
|
@@ -80,9 +85,11 @@ if not has_lightning_attention:
|
|
80 |
|
81 |
return output
|
82 |
|
|
|
83 |
########## start Transnormer
|
84 |
##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
|
85 |
class Lrpe(nn.Module):
|
|
|
86 |
def __init__(
|
87 |
self,
|
88 |
num_heads=8,
|
@@ -92,9 +99,8 @@ class Lrpe(nn.Module):
|
|
92 |
d = num_heads * embed_dim
|
93 |
|
94 |
self.index = torch.empty(0)
|
95 |
-
self.theta = nn.Parameter(
|
96 |
-
|
97 |
-
)
|
98 |
|
99 |
def extra_repr(self):
|
100 |
return print_module(self)
|
@@ -113,6 +119,7 @@ class Lrpe(nn.Module):
|
|
113 |
|
114 |
|
115 |
class GLU(nn.Module):
|
|
|
116 |
def __init__(self, d1, d2, bias=False):
|
117 |
super().__init__()
|
118 |
if debug:
|
@@ -135,6 +142,7 @@ class GLU(nn.Module):
|
|
135 |
|
136 |
|
137 |
class NormLinearAttention(nn.Module):
|
|
|
138 |
def __init__(
|
139 |
self,
|
140 |
embed_dim,
|
@@ -181,7 +189,6 @@ class NormLinearAttention(nn.Module):
|
|
181 |
use_cache: bool = False,
|
182 |
slope_rate: Optional[torch.Tensor] = None,
|
183 |
):
|
184 |
-
do_eval = eval(os.environ.get("do_eval", default="False"))
|
185 |
if (not self.training) and (not do_eval):
|
186 |
return self.inference(
|
187 |
x,
|
@@ -198,8 +205,8 @@ class NormLinearAttention(nn.Module):
|
|
198 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
199 |
# reshape
|
200 |
q, k, v = map(
|
201 |
-
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
202 |
-
|
203 |
# act
|
204 |
q = self.act(q)
|
205 |
k = self.act(k)
|
@@ -217,24 +224,23 @@ class NormLinearAttention(nn.Module):
|
|
217 |
# lrpe
|
218 |
if self.linear_use_lrpe:
|
219 |
q = self.lrpe(q, offset=q_offset)
|
220 |
-
k = self.lrpe(k)
|
221 |
|
222 |
if attn_mask == None:
|
223 |
attn_mask = (torch.tril(torch.ones(n, n))).to(q)
|
224 |
|
225 |
if attn_padding_mask is not None:
|
226 |
v = v.masked_fill(
|
227 |
-
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
|
228 |
-
|
229 |
|
230 |
if not has_lightning_attention:
|
231 |
if slope_rate != None:
|
232 |
attn_mask = torch.exp(slope_rate * attn_mask)
|
233 |
output = linear_attention(q, k, v, attn_mask)
|
234 |
else:
|
235 |
-
output = lightning_attention(
|
236 |
-
|
237 |
-
)
|
238 |
|
239 |
# reshape
|
240 |
output = rearrange(output, "b h n d -> b n (h d)")
|
@@ -253,14 +259,14 @@ class NormLinearAttention(nn.Module):
|
|
253 |
return output, attn_weights, past_key_value
|
254 |
|
255 |
def inference(
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
):
|
265 |
# x: b n d
|
266 |
n = x.shape[-2]
|
@@ -268,8 +274,8 @@ class NormLinearAttention(nn.Module):
|
|
268 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
269 |
# reshape
|
270 |
q, k, v = map(
|
271 |
-
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
272 |
-
|
273 |
# act
|
274 |
q = self.act(q)
|
275 |
k = self.act(k)
|
@@ -277,7 +283,7 @@ class NormLinearAttention(nn.Module):
|
|
277 |
# rpe
|
278 |
if self.linear_use_lrpe:
|
279 |
q = self.lrpe(q, offset=self.offset)
|
280 |
-
k = self.lrpe(k)
|
281 |
|
282 |
if past_key_value == None:
|
283 |
self.offset = q.shape[-2]
|
@@ -288,38 +294,47 @@ class NormLinearAttention(nn.Module):
|
|
288 |
|
289 |
# only use for the first time
|
290 |
if past_key_value == None:
|
291 |
-
|
292 |
-
attn_mask = (torch.tril(torch.ones(n, n))).to(q)
|
293 |
-
if slope_rate != None:
|
294 |
-
attn_mask = torch.exp(slope_rate * attn_mask)
|
295 |
-
|
296 |
if attn_padding_mask is not None:
|
297 |
-
|
298 |
-
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
else:
|
324 |
kv = past_key_value
|
325 |
|
@@ -327,12 +342,11 @@ class NormLinearAttention(nn.Module):
|
|
327 |
for i in range(n):
|
328 |
kv = ratio * kv + torch.einsum(
|
329 |
"... n d, ... n e -> ... d e",
|
330 |
-
k[:, :, i
|
331 |
-
v[:, :, i
|
332 |
-
)
|
333 |
-
qkv = torch.einsum(
|
334 |
-
"... n e, ... e d -> ... n d", q[:, :, i : i + 1], kv
|
335 |
)
|
|
|
|
|
336 |
output.append(qkv)
|
337 |
output = torch.concat(output, dim=-2)
|
338 |
|
@@ -351,6 +365,7 @@ class NormLinearAttention(nn.Module):
|
|
351 |
|
352 |
|
353 |
class TransnormerDecoderLayer(nn.Module):
|
|
|
354 |
def __init__(self, config: TransnormerConfig):
|
355 |
super().__init__()
|
356 |
self.embed_dim = config.decoder_embed_dim
|
@@ -389,18 +404,18 @@ class TransnormerDecoderLayer(nn.Module):
|
|
389 |
return residual + x
|
390 |
|
391 |
def forward(
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
):
|
401 |
residual = x
|
402 |
input = x
|
403 |
-
|
404 |
o1, self_attn_weights, present_key_value = self.token_mixer(
|
405 |
x=self.token_norm(input),
|
406 |
attn_mask=attn_mask,
|
@@ -418,10 +433,10 @@ class TransnormerDecoderLayer(nn.Module):
|
|
418 |
outputs = (o, )
|
419 |
|
420 |
if output_attentions:
|
421 |
-
outputs += (self_attn_weights,)
|
422 |
|
423 |
if use_cache:
|
424 |
-
outputs += (present_key_value,)
|
425 |
|
426 |
return outputs
|
427 |
|
@@ -443,9 +458,7 @@ TRANSNORMER_START_DOCSTRING = r"""
|
|
443 |
"""
|
444 |
|
445 |
|
446 |
-
@add_start_docstrings(
|
447 |
-
TRANSNORMER_START_DOCSTRING,
|
448 |
-
)
|
449 |
class TransnormerPreTrainedModel(PreTrainedModel):
|
450 |
config_class = TransnormerConfig
|
451 |
base_model_prefix = "model"
|
@@ -530,9 +543,7 @@ TRANSNORMER_INPUTS_DOCSTRING = r"""
|
|
530 |
"""
|
531 |
|
532 |
|
533 |
-
@add_start_docstrings(
|
534 |
-
TRANSNORMER_START_DOCSTRING,
|
535 |
-
)
|
536 |
class TransnormerModel(TransnormerPreTrainedModel):
|
537 |
"""
|
538 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
|
@@ -556,29 +567,31 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
556 |
self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
|
557 |
|
558 |
# params
|
559 |
-
self.embed_tokens = nn.Embedding(
|
560 |
-
|
561 |
-
|
562 |
self.layers = nn.ModuleList([])
|
563 |
for i in range(config.decoder_layers):
|
564 |
if len(self.linear_use_lrpe_list) > 0:
|
565 |
config.linear_use_lrpe = self.linear_use_lrpe_list[i]
|
566 |
self.layers.append(TransnormerDecoderLayer(config))
|
567 |
|
568 |
-
self.final_norm = get_norm_fn(config.norm_type)(
|
|
|
569 |
self.embed_dim = config.decoder_embed_dim
|
570 |
-
self.embed_scale = (
|
571 |
-
|
572 |
-
)
|
573 |
|
574 |
# Initialize weights and apply final processing
|
575 |
self.post_init()
|
576 |
|
577 |
@staticmethod
|
578 |
def _build_slope_tensor(n_attention_heads: int):
|
|
|
579 |
def get_slopes(n):
|
|
|
580 |
def get_slopes_power_of_2(n):
|
581 |
-
start = 2
|
582 |
ratio = start
|
583 |
return [start * ratio**i for i in range(n)]
|
584 |
|
@@ -587,18 +600,15 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
587 |
n
|
588 |
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
589 |
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
590 |
-
closest_power_of_2 = 2
|
591 |
math.log2(n)
|
592 |
) # when the number of heads is not a power of 2, we use this workaround.
|
593 |
-
return (
|
594 |
-
|
595 |
-
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
596 |
-
)
|
597 |
|
598 |
# h, 1, 1
|
599 |
slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
|
600 |
-
n_attention_heads, 1, 1
|
601 |
-
)
|
602 |
|
603 |
return slopes
|
604 |
|
@@ -611,26 +621,26 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
611 |
def set_input_embeddings(self, value):
|
612 |
self.embed_tokens = value
|
613 |
|
614 |
-
def _prepare_decoder_linear_attn_mask(
|
615 |
-
|
616 |
-
):
|
617 |
bsz, tgt_len = input_shape
|
618 |
src_len = tgt_len + past_key_values_length
|
619 |
|
620 |
def power_log(x):
|
621 |
-
return 2
|
622 |
|
623 |
n = power_log(max(tgt_len, src_len))
|
624 |
if self._linear_attn_mask.shape[-1] < n:
|
625 |
|
626 |
def get_mask(n):
|
627 |
-
mask = torch.triu(
|
|
|
628 |
# no slope version
|
629 |
# -n, ..., -2, -1, 0
|
630 |
for i in range(n):
|
631 |
x = torch.arange(i + 1)
|
632 |
y = x
|
633 |
-
mask[i, :
|
634 |
|
635 |
return mask
|
636 |
|
@@ -642,7 +652,8 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
642 |
linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
|
643 |
num_heads = linear_attn_mask.shape[0]
|
644 |
|
645 |
-
return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len,
|
|
|
646 |
|
647 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
648 |
def forward(
|
@@ -656,21 +667,15 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
656 |
output_hidden_states: Optional[bool] = None,
|
657 |
return_dict: Optional[bool] = None,
|
658 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
659 |
-
output_attentions = (
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
output_hidden_states = (
|
665 |
-
output_hidden_states
|
666 |
-
if output_hidden_states is not None
|
667 |
-
else self.config.output_hidden_states
|
668 |
-
)
|
669 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
670 |
|
671 |
-
return_dict = (
|
672 |
-
|
673 |
-
)
|
674 |
|
675 |
# retrieve input_ids and inputs_embeds
|
676 |
if input_ids is not None and inputs_embeds is not None:
|
@@ -692,7 +697,7 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
692 |
if past_key_values is not None:
|
693 |
past_key_values_length = past_key_values[0][0].shape[-2]
|
694 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
695 |
-
|
696 |
if inputs_embeds is None:
|
697 |
# !!! use embed_scale
|
698 |
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
@@ -714,23 +719,23 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
714 |
##### norm linear layers
|
715 |
linear_attn_padding_mask = attn_padding_mask
|
716 |
linear_attn_mask = self._prepare_decoder_linear_attn_mask(
|
717 |
-
(batch_size, seq_length), inputs_embeds, past_key_values_length
|
718 |
-
)
|
719 |
|
720 |
-
slope_rates = [
|
|
|
|
|
721 |
|
722 |
for idx, layer in enumerate(self.layers):
|
723 |
if output_hidden_states:
|
724 |
-
all_hidden_states += (hidden_states,)
|
725 |
|
726 |
-
past_key_value = (
|
727 |
-
|
728 |
-
)
|
729 |
|
730 |
slope_rate = slope_rates[idx]
|
731 |
slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
|
732 |
mask = linear_attn_mask
|
733 |
-
|
734 |
layer_outputs = layer(
|
735 |
hidden_states,
|
736 |
attn_mask=mask,
|
@@ -744,27 +749,24 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
744 |
hidden_states = layer_outputs[0]
|
745 |
|
746 |
if use_cache:
|
747 |
-
next_decoder_cache += (
|
|
|
748 |
|
749 |
if output_attentions:
|
750 |
-
all_self_attns += (layer_outputs[1],)
|
751 |
-
|
752 |
-
# if idx == 0:
|
753 |
-
# break
|
754 |
|
755 |
hidden_states = self.final_norm(hidden_states)
|
756 |
|
757 |
# add hidden states from the last decoder layer
|
758 |
if output_hidden_states:
|
759 |
-
all_hidden_states += (hidden_states,)
|
760 |
|
761 |
next_cache = next_decoder_cache if use_cache else None
|
762 |
if not return_dict:
|
763 |
return tuple(
|
764 |
-
v
|
765 |
-
|
766 |
-
if v is not None
|
767 |
-
)
|
768 |
return BaseModelOutputWithPast(
|
769 |
last_hidden_state=hidden_states,
|
770 |
past_key_values=next_cache,
|
@@ -774,6 +776,7 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
774 |
|
775 |
|
776 |
class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
|
777 |
def __init__(self, config):
|
778 |
super().__init__(config)
|
779 |
self.model = TransnormerModel(config)
|
@@ -781,9 +784,9 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
781 |
logging_info(self.model)
|
782 |
|
783 |
# the lm_head weight is automatically tied to the embed tokens weight
|
784 |
-
self.lm_head = nn.Linear(
|
785 |
-
|
786 |
-
|
787 |
|
788 |
# Initialize weights and apply final processing
|
789 |
self.post_init()
|
@@ -807,9 +810,8 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
807 |
return self.model
|
808 |
|
809 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
810 |
-
@replace_return_docstrings(
|
811 |
-
|
812 |
-
)
|
813 |
def forward(
|
814 |
self,
|
815 |
input_ids: torch.LongTensor = None,
|
@@ -847,19 +849,13 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
847 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
848 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
849 |
```"""
|
850 |
-
output_attentions = (
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
if output_hidden_states is not None
|
858 |
-
else self.config.output_hidden_states
|
859 |
-
)
|
860 |
-
return_dict = (
|
861 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
862 |
-
)
|
863 |
|
864 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
865 |
outputs = self.model(
|
@@ -890,8 +886,8 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
890 |
loss = loss_fct(shift_logits, shift_labels)
|
891 |
|
892 |
if not return_dict:
|
893 |
-
output = (logits,) + outputs[1:]
|
894 |
-
return (loss,) + output if loss is not None else output
|
895 |
|
896 |
return CausalLMOutputWithPast(
|
897 |
loss=loss,
|
@@ -918,22 +914,18 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
918 |
else:
|
919 |
model_inputs = {"input_ids": input_ids}
|
920 |
|
921 |
-
model_inputs.update(
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
}
|
927 |
-
)
|
928 |
return model_inputs
|
929 |
|
930 |
@staticmethod
|
931 |
def _reorder_cache(past_key_values, beam_idx):
|
932 |
reordered_past = ()
|
933 |
for layer_past in past_key_values:
|
934 |
-
reordered_past += (
|
935 |
-
|
936 |
-
|
937 |
-
),
|
938 |
-
)
|
939 |
return reordered_past
|
|
|
53 |
|
54 |
_CONFIG_FOR_DOC = "TransnormerConfig"
|
55 |
|
56 |
+
# TODO: fix environment: https://huggingface.co/OpenNLPLab/TransNormerLLM-7B/discussions/1
|
57 |
use_triton = eval(os.environ.get("use_triton", default="True"))
|
58 |
debug = eval(os.environ.get("debug", default="False"))
|
59 |
+
do_eval = eval(os.environ.get("do_eval", default="False"))
|
60 |
+
eval_and_not_generate = eval(
|
61 |
+
os.environ.get("eval_and_not_generate", default="False"))
|
62 |
+
BLOCK = 256
|
63 |
|
64 |
if use_triton:
|
65 |
try:
|
|
|
85 |
|
86 |
return output
|
87 |
|
88 |
+
|
89 |
########## start Transnormer
|
90 |
##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
|
91 |
class Lrpe(nn.Module):
|
92 |
+
|
93 |
def __init__(
|
94 |
self,
|
95 |
num_heads=8,
|
|
|
99 |
d = num_heads * embed_dim
|
100 |
|
101 |
self.index = torch.empty(0)
|
102 |
+
self.theta = nn.Parameter(10000**(-2 / d * torch.arange(d)).reshape(
|
103 |
+
num_heads, 1, -1))
|
|
|
104 |
|
105 |
def extra_repr(self):
|
106 |
return print_module(self)
|
|
|
119 |
|
120 |
|
121 |
class GLU(nn.Module):
|
122 |
+
|
123 |
def __init__(self, d1, d2, bias=False):
|
124 |
super().__init__()
|
125 |
if debug:
|
|
|
142 |
|
143 |
|
144 |
class NormLinearAttention(nn.Module):
|
145 |
+
|
146 |
def __init__(
|
147 |
self,
|
148 |
embed_dim,
|
|
|
189 |
use_cache: bool = False,
|
190 |
slope_rate: Optional[torch.Tensor] = None,
|
191 |
):
|
|
|
192 |
if (not self.training) and (not do_eval):
|
193 |
return self.inference(
|
194 |
x,
|
|
|
205 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
206 |
# reshape
|
207 |
q, k, v = map(
|
208 |
+
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
209 |
+
[q, k, v])
|
210 |
# act
|
211 |
q = self.act(q)
|
212 |
k = self.act(k)
|
|
|
224 |
# lrpe
|
225 |
if self.linear_use_lrpe:
|
226 |
q = self.lrpe(q, offset=q_offset)
|
227 |
+
k = self.lrpe(k, offset=q_offset)
|
228 |
|
229 |
if attn_mask == None:
|
230 |
attn_mask = (torch.tril(torch.ones(n, n))).to(q)
|
231 |
|
232 |
if attn_padding_mask is not None:
|
233 |
v = v.masked_fill(
|
234 |
+
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
|
235 |
+
torch.bool), 0)
|
236 |
|
237 |
if not has_lightning_attention:
|
238 |
if slope_rate != None:
|
239 |
attn_mask = torch.exp(slope_rate * attn_mask)
|
240 |
output = linear_attention(q, k, v, attn_mask)
|
241 |
else:
|
242 |
+
output = lightning_attention(q, k, v, True,
|
243 |
+
slope_rate.squeeze(-1).squeeze(-1))
|
|
|
244 |
|
245 |
# reshape
|
246 |
output = rearrange(output, "b h n d -> b n (h d)")
|
|
|
259 |
return output, attn_weights, past_key_value
|
260 |
|
261 |
def inference(
|
262 |
+
self,
|
263 |
+
x,
|
264 |
+
attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
|
265 |
+
attn_padding_mask: Optional[torch.Tensor] = None, # (b, m)
|
266 |
+
output_attentions: bool = False,
|
267 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
268 |
+
use_cache: bool = False,
|
269 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
270 |
):
|
271 |
# x: b n d
|
272 |
n = x.shape[-2]
|
|
|
274 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
275 |
# reshape
|
276 |
q, k, v = map(
|
277 |
+
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
278 |
+
[q, k, v])
|
279 |
# act
|
280 |
q = self.act(q)
|
281 |
k = self.act(k)
|
|
|
283 |
# rpe
|
284 |
if self.linear_use_lrpe:
|
285 |
q = self.lrpe(q, offset=self.offset)
|
286 |
+
k = self.lrpe(k, offset=self.offset)
|
287 |
|
288 |
if past_key_value == None:
|
289 |
self.offset = q.shape[-2]
|
|
|
294 |
|
295 |
# only use for the first time
|
296 |
if past_key_value == None:
|
297 |
+
slope_rate = slope_rate.to(torch.float32)
|
|
|
|
|
|
|
|
|
298 |
if attn_padding_mask is not None:
|
299 |
+
v = v.masked_fill(
|
300 |
+
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
|
301 |
+
torch.bool), 0)
|
302 |
+
NUM_BLOCK = (n + BLOCK - 1) // BLOCK
|
303 |
+
b, h, n, d = q.shape
|
304 |
+
e = v.shape[-1]
|
305 |
+
# other
|
306 |
+
array = torch.arange(BLOCK).to(q) + 1 ## !!!! important
|
307 |
+
q_decay = torch.exp(-slope_rate * array.reshape(-1, 1))
|
308 |
+
k_decay = torch.exp(-slope_rate * (BLOCK - array.reshape(-1, 1)))
|
309 |
+
index = array[:, None] - array[None, :]
|
310 |
+
s_index = slope_rate * index[
|
311 |
+
None,
|
312 |
+
None,
|
313 |
+
]
|
314 |
+
s_index = torch.where(index >= 0, -s_index, float("-inf"))
|
315 |
+
diag_decay = torch.exp(s_index)
|
316 |
+
|
317 |
+
kv = torch.zeros(b, h, d, e).to(torch.float32).to(q.device)
|
318 |
+
output = torch.empty((b, h, n, e), dtype=q.dtype, device=q.device)
|
319 |
+
for i in range(NUM_BLOCK):
|
320 |
+
si = i * BLOCK
|
321 |
+
ei = min(si + BLOCK, n)
|
322 |
+
m = ei - si
|
323 |
+
|
324 |
+
qi = q[:, :, si:ei].contiguous()
|
325 |
+
ki = k[:, :, si:ei].contiguous()
|
326 |
+
vi = v[:, :, si:ei].contiguous()
|
327 |
+
qkv_none_diag = torch.matmul(qi * q_decay[:, :m],
|
328 |
+
kv).to(torch.float32)
|
329 |
+
|
330 |
+
# diag
|
331 |
+
qk = torch.matmul(qi, ki.transpose(-1, -2)).to(
|
332 |
+
torch.float32) * diag_decay[:, :, :m, :m]
|
333 |
+
qkv_diag = torch.matmul(qk, vi.to(torch.float32))
|
334 |
+
block_decay = torch.exp(-slope_rate * m)
|
335 |
+
output[:, :, si:ei] = qkv_none_diag + qkv_diag
|
336 |
+
kv = block_decay * kv + torch.matmul(
|
337 |
+
(ki * k_decay[:, -m:]).transpose(-1, -2).to(vi.dtype), vi)
|
338 |
else:
|
339 |
kv = past_key_value
|
340 |
|
|
|
342 |
for i in range(n):
|
343 |
kv = ratio * kv + torch.einsum(
|
344 |
"... n d, ... n e -> ... d e",
|
345 |
+
k[:, :, i:i + 1],
|
346 |
+
v[:, :, i:i + 1],
|
|
|
|
|
|
|
347 |
)
|
348 |
+
qkv = torch.einsum("... n e, ... e d -> ... n d",
|
349 |
+
q[:, :, i:i + 1], kv)
|
350 |
output.append(qkv)
|
351 |
output = torch.concat(output, dim=-2)
|
352 |
|
|
|
365 |
|
366 |
|
367 |
class TransnormerDecoderLayer(nn.Module):
|
368 |
+
|
369 |
def __init__(self, config: TransnormerConfig):
|
370 |
super().__init__()
|
371 |
self.embed_dim = config.decoder_embed_dim
|
|
|
404 |
return residual + x
|
405 |
|
406 |
def forward(
|
407 |
+
self,
|
408 |
+
x,
|
409 |
+
attn_mask: Optional[torch.Tensor] = None,
|
410 |
+
attn_padding_mask: Optional[torch.Tensor] = None,
|
411 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
412 |
+
output_attentions: Optional[bool] = False,
|
413 |
+
use_cache: Optional[bool] = False,
|
414 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
415 |
):
|
416 |
residual = x
|
417 |
input = x
|
418 |
+
|
419 |
o1, self_attn_weights, present_key_value = self.token_mixer(
|
420 |
x=self.token_norm(input),
|
421 |
attn_mask=attn_mask,
|
|
|
433 |
outputs = (o, )
|
434 |
|
435 |
if output_attentions:
|
436 |
+
outputs += (self_attn_weights, )
|
437 |
|
438 |
if use_cache:
|
439 |
+
outputs += (present_key_value, )
|
440 |
|
441 |
return outputs
|
442 |
|
|
|
458 |
"""
|
459 |
|
460 |
|
461 |
+
@add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
|
|
|
|
|
462 |
class TransnormerPreTrainedModel(PreTrainedModel):
|
463 |
config_class = TransnormerConfig
|
464 |
base_model_prefix = "model"
|
|
|
543 |
"""
|
544 |
|
545 |
|
546 |
+
@add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
|
|
|
|
|
547 |
class TransnormerModel(TransnormerPreTrainedModel):
|
548 |
"""
|
549 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
|
|
|
567 |
self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
|
568 |
|
569 |
# params
|
570 |
+
self.embed_tokens = nn.Embedding(config.vocab_size,
|
571 |
+
config.decoder_embed_dim,
|
572 |
+
self.padding_idx)
|
573 |
self.layers = nn.ModuleList([])
|
574 |
for i in range(config.decoder_layers):
|
575 |
if len(self.linear_use_lrpe_list) > 0:
|
576 |
config.linear_use_lrpe = self.linear_use_lrpe_list[i]
|
577 |
self.layers.append(TransnormerDecoderLayer(config))
|
578 |
|
579 |
+
self.final_norm = get_norm_fn(config.norm_type)(
|
580 |
+
config.decoder_embed_dim)
|
581 |
self.embed_dim = config.decoder_embed_dim
|
582 |
+
self.embed_scale = (1.0 if config.no_scale_embedding else math.sqrt(
|
583 |
+
self.embed_dim))
|
|
|
584 |
|
585 |
# Initialize weights and apply final processing
|
586 |
self.post_init()
|
587 |
|
588 |
@staticmethod
|
589 |
def _build_slope_tensor(n_attention_heads: int):
|
590 |
+
|
591 |
def get_slopes(n):
|
592 |
+
|
593 |
def get_slopes_power_of_2(n):
|
594 |
+
start = 2**(-(2**-(math.log2(n) - 3)))
|
595 |
ratio = start
|
596 |
return [start * ratio**i for i in range(n)]
|
597 |
|
|
|
600 |
n
|
601 |
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
602 |
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
603 |
+
closest_power_of_2 = 2**math.floor(
|
604 |
math.log2(n)
|
605 |
) # when the number of heads is not a power of 2, we use this workaround.
|
606 |
+
return (get_slopes_power_of_2(closest_power_of_2) + get_slopes(
|
607 |
+
2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
|
|
|
|
|
608 |
|
609 |
# h, 1, 1
|
610 |
slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
|
611 |
+
n_attention_heads, 1, 1)
|
|
|
612 |
|
613 |
return slopes
|
614 |
|
|
|
621 |
def set_input_embeddings(self, value):
|
622 |
self.embed_tokens = value
|
623 |
|
624 |
+
def _prepare_decoder_linear_attn_mask(self, input_shape, inputs_embeds,
|
625 |
+
past_key_values_length):
|
|
|
626 |
bsz, tgt_len = input_shape
|
627 |
src_len = tgt_len + past_key_values_length
|
628 |
|
629 |
def power_log(x):
|
630 |
+
return 2**(math.ceil(math.log(x, 2)))
|
631 |
|
632 |
n = power_log(max(tgt_len, src_len))
|
633 |
if self._linear_attn_mask.shape[-1] < n:
|
634 |
|
635 |
def get_mask(n):
|
636 |
+
mask = torch.triu(
|
637 |
+
torch.zeros(n, n).float().fill_(float("-inf")), 1)
|
638 |
# no slope version
|
639 |
# -n, ..., -2, -1, 0
|
640 |
for i in range(n):
|
641 |
x = torch.arange(i + 1)
|
642 |
y = x
|
643 |
+
mask[i, :i + 1] = -torch.flip(y, [0])
|
644 |
|
645 |
return mask
|
646 |
|
|
|
652 |
linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
|
653 |
num_heads = linear_attn_mask.shape[0]
|
654 |
|
655 |
+
return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len,
|
656 |
+
src_len)
|
657 |
|
658 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
659 |
def forward(
|
|
|
667 |
output_hidden_states: Optional[bool] = None,
|
668 |
return_dict: Optional[bool] = None,
|
669 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
670 |
+
output_attentions = (output_attentions if output_attentions is not None
|
671 |
+
else self.config.output_attentions)
|
672 |
+
output_hidden_states = (output_hidden_states
|
673 |
+
if output_hidden_states is not None else
|
674 |
+
self.config.output_hidden_states)
|
|
|
|
|
|
|
|
|
|
|
675 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
676 |
|
677 |
+
return_dict = (return_dict if return_dict is not None else
|
678 |
+
self.config.use_return_dict)
|
|
|
679 |
|
680 |
# retrieve input_ids and inputs_embeds
|
681 |
if input_ids is not None and inputs_embeds is not None:
|
|
|
697 |
if past_key_values is not None:
|
698 |
past_key_values_length = past_key_values[0][0].shape[-2]
|
699 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
700 |
+
|
701 |
if inputs_embeds is None:
|
702 |
# !!! use embed_scale
|
703 |
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
|
|
719 |
##### norm linear layers
|
720 |
linear_attn_padding_mask = attn_padding_mask
|
721 |
linear_attn_mask = self._prepare_decoder_linear_attn_mask(
|
722 |
+
(batch_size, seq_length), inputs_embeds, past_key_values_length)
|
|
|
723 |
|
724 |
+
slope_rates = [
|
725 |
+
self.slopes.to(input_ids.device) for _ in range(self.num_layers)
|
726 |
+
]
|
727 |
|
728 |
for idx, layer in enumerate(self.layers):
|
729 |
if output_hidden_states:
|
730 |
+
all_hidden_states += (hidden_states, )
|
731 |
|
732 |
+
past_key_value = (past_key_values[idx]
|
733 |
+
if past_key_values is not None else None)
|
|
|
734 |
|
735 |
slope_rate = slope_rates[idx]
|
736 |
slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
|
737 |
mask = linear_attn_mask
|
738 |
+
|
739 |
layer_outputs = layer(
|
740 |
hidden_states,
|
741 |
attn_mask=mask,
|
|
|
749 |
hidden_states = layer_outputs[0]
|
750 |
|
751 |
if use_cache:
|
752 |
+
next_decoder_cache += (
|
753 |
+
layer_outputs[2 if output_attentions else 1], )
|
754 |
|
755 |
if output_attentions:
|
756 |
+
all_self_attns += (layer_outputs[1], )
|
|
|
|
|
|
|
757 |
|
758 |
hidden_states = self.final_norm(hidden_states)
|
759 |
|
760 |
# add hidden states from the last decoder layer
|
761 |
if output_hidden_states:
|
762 |
+
all_hidden_states += (hidden_states, )
|
763 |
|
764 |
next_cache = next_decoder_cache if use_cache else None
|
765 |
if not return_dict:
|
766 |
return tuple(
|
767 |
+
v for v in
|
768 |
+
[hidden_states, next_cache, all_hidden_states, all_self_attns]
|
769 |
+
if v is not None)
|
|
|
770 |
return BaseModelOutputWithPast(
|
771 |
last_hidden_state=hidden_states,
|
772 |
past_key_values=next_cache,
|
|
|
776 |
|
777 |
|
778 |
class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
779 |
+
|
780 |
def __init__(self, config):
|
781 |
super().__init__(config)
|
782 |
self.model = TransnormerModel(config)
|
|
|
784 |
logging_info(self.model)
|
785 |
|
786 |
# the lm_head weight is automatically tied to the embed tokens weight
|
787 |
+
self.lm_head = nn.Linear(config.decoder_embed_dim,
|
788 |
+
config.vocab_size,
|
789 |
+
bias=False)
|
790 |
|
791 |
# Initialize weights and apply final processing
|
792 |
self.post_init()
|
|
|
810 |
return self.model
|
811 |
|
812 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
813 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast,
|
814 |
+
config_class=_CONFIG_FOR_DOC)
|
|
|
815 |
def forward(
|
816 |
self,
|
817 |
input_ids: torch.LongTensor = None,
|
|
|
849 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
850 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
851 |
```"""
|
852 |
+
output_attentions = (output_attentions if output_attentions is not None
|
853 |
+
else self.config.output_attentions)
|
854 |
+
output_hidden_states = (output_hidden_states
|
855 |
+
if output_hidden_states is not None else
|
856 |
+
self.config.output_hidden_states)
|
857 |
+
return_dict = (return_dict if return_dict is not None else
|
858 |
+
self.config.use_return_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
859 |
|
860 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
861 |
outputs = self.model(
|
|
|
886 |
loss = loss_fct(shift_logits, shift_labels)
|
887 |
|
888 |
if not return_dict:
|
889 |
+
output = (logits, ) + outputs[1:]
|
890 |
+
return (loss, ) + output if loss is not None else output
|
891 |
|
892 |
return CausalLMOutputWithPast(
|
893 |
loss=loss,
|
|
|
914 |
else:
|
915 |
model_inputs = {"input_ids": input_ids}
|
916 |
|
917 |
+
model_inputs.update({
|
918 |
+
"past_key_values": past_key_values,
|
919 |
+
"use_cache": kwargs.get("use_cache"),
|
920 |
+
"attention_mask": attention_mask,
|
921 |
+
})
|
|
|
|
|
922 |
return model_inputs
|
923 |
|
924 |
@staticmethod
|
925 |
def _reorder_cache(past_key_values, beam_idx):
|
926 |
reordered_past = ()
|
927 |
for layer_past in past_key_values:
|
928 |
+
reordered_past += (tuple(
|
929 |
+
past_state.index_select(0, beam_idx)
|
930 |
+
for past_state in layer_past), )
|
|
|
|
|
931 |
return reordered_past
|