File size: 5,349 Bytes
7da74c9
 
 
 
8e1ed56
 
2f96aba
dec6364
d124e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da74c9
 
 
 
 
 
52dca6d
7da74c9
 
 
 
 
 
a7e31f7
7da74c9
 
 
 
 
 
 
 
a432320
7da74c9
 
 
 
 
 
a99b3f3
7da74c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c5044
 
244a590
 
 
 
 
 
 
 
 
 
7da74c9
 
 
 
 
 
 
ffa5219
a828f84
 
 
7da74c9
 
ffa5219
2ae9870
 
 
ffa5219
 
2ae9870
 
 
 
 
 
ffa5219
 
2ae9870
 
 
7da74c9
 
 
 
 
 
68c5044
 
 
7da74c9
 
 
 
a99b3f3
 
 
 
 
 
 
 
 
 
 
 
7da74c9
37e8003
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: cc-by-nc-4.0
language:
- ro
base_model:
- OpenLLM-Ro/RoLlama2-7b-Base
new_version: OpenLLM-Ro/RoLlama2-7b-Instruct
model-index:
- name: OpenLLM-Ro/RoLlama2-7b-Chat
  results:
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_arc_challenge
      type: RoARC
    metrics:
    - name: Average
      type: accuracy
      value: 41.92
    - name: 0-shot
      type: accuracy
      value: 39.59
    - name: 1-shot
      type: accuracy
      value: 41.05
    - name: 3-shot
      type: accuracy
      value: 42.42
    - name: 5-shot
      type: accuracy
      value: 42.16
    - name: 10-shot
      type: accuracy
      value: 43.36
    - name: 25-shot
      type: accuracy
      value: 42.93
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **chat 7B model**. Links to other models can be found at the bottom of this page.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->
OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.


- **Developed by:** OpenLLM-Ro
<!-- - **Funded by [optional]:** [More Information Needed] -->
<!-- - **Shared by [optional]:** [More Information Needed] -->
<!-- - **Model type:** [More Information Needed] -->
- **Language(s):** Romanian
- **License:** cc-by-nc-4.0
- **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/OpenLLM-Ro/llama-recipes
- **Paper:** https://arxiv.org/abs/2405.07703

## Intended Use

### Intended Use Cases

RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.



## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Chat")
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Chat")

instruction = "Care este cel mai înalt vârf muntos din România?"
chat = [
        {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
        {"role": "user", "content": instruction},
        ]
prompt = tokenizer.apply_chat_template(chat, tokenize=False)

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
```

## Benchmarks

| Model              | Average  | ARC      | MMLU     |Winogrande|HellaSwag | GSM8k    |TruthfulQA|
|--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| Llama-2-7b-chat    | 36.84    | 37.03    | 33.81    | 55.87    | 45.36    | 4.90     | 44.09    |  
|RoLlama2-7b-Instruct|**45.71**|**43.66**|**39.70**|**70.34** | 57.36  |**18.78**| 44.44    |  
|*RoLlama2-7b-Chat*    | *43.82*    | *41.92*    | *37.29*    | *66.68*    | ***57.91***| *13.47*    | ***45.65***|  



## Romanian MT-Bench

| Model              | Average  | 1st turn      | 2nd turn     | Answers in Ro |
|--------------------|:--------:|:--------:|:--------:|:--------:|
| Llama-2-7b-chat    | 1.08    | 1.44    | 0.73    | 45 / 160 |
|RoLlama2-7b-Instruct| **3.86**|**4.68**| **3.04** | **160 / 160** |
|*RoLlama2-7b-Chat*    | *TBC*    | *TBC*    | *TBC*    | *TBC* |

## RoCulturaBench

| Model              | Score  | Answers in Ro|
|--------------------|:--------:|:--------:|
| Llama-2-7b-chat    | 1.21    | 33 / 100   |
|RoLlama2-7b-Instruct| **3.77**| **160 / 160** |
|*RoLlama2-7b-Chat*    | *TBC*    | *TBC*    |




## RoLlama2 Model Family

| Model              | Link  |
|--------------------|:--------:|
|RoLlama2-7b-Base | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)    |
|RoLlama2-7b-Instruct| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct) |
|*RoLlama2-7b-Chat*    | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Chat) |


## Citation 

```
@misc{masala2024openllmrotechnicalreport,
      title={OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs}, 
      author={Mihai Masala and Denis C. Ilie-Ablachim and Dragos Corlatescu and Miruna Zavelca and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
      year={2024},
      eprint={2405.07703},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2405.07703}, 
}
```
<!-- **APA:**

[More Information Needed]  -->