|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from transformers import PreTrainedModel |
|
from timm.models.layers import trunc_normal_, DropPath |
|
from .intern_image_config import InternImageConfig |
|
from .dcnv3 import DCNv3_pytorch |
|
|
|
|
|
class to_channels_first(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x.permute(0, 3, 1, 2) |
|
|
|
|
|
class to_channels_last(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x.permute(0, 2, 3, 1) |
|
|
|
|
|
def build_norm_layer(dim, |
|
norm_layer, |
|
in_format='channels_last', |
|
out_format='channels_last', |
|
eps=1e-6): |
|
layers = [] |
|
if norm_layer == 'BN': |
|
if in_format == 'channels_last': |
|
layers.append(to_channels_first()) |
|
layers.append(nn.BatchNorm2d(dim)) |
|
if out_format == 'channels_last': |
|
layers.append(to_channels_last()) |
|
elif norm_layer == 'LN': |
|
if in_format == 'channels_first': |
|
layers.append(to_channels_last()) |
|
layers.append(nn.LayerNorm(dim, eps=eps)) |
|
if out_format == 'channels_first': |
|
layers.append(to_channels_first()) |
|
else: |
|
raise NotImplementedError( |
|
f'build_norm_layer does not support {norm_layer}') |
|
return nn.Sequential(*layers) |
|
|
|
|
|
def build_act_layer(act_layer): |
|
if act_layer == 'ReLU': |
|
return nn.ReLU(inplace=True) |
|
elif act_layer == 'SiLU': |
|
return nn.SiLU(inplace=True) |
|
elif act_layer == 'GELU': |
|
return nn.GELU() |
|
|
|
raise NotImplementedError(f'build_act_layer does not support {act_layer}') |
|
class StemLayer(nn.Module): |
|
r""" Stem layer of InternImage |
|
Args: |
|
in_chans (int): number of input channels |
|
out_chans (int): number of output channels |
|
act_layer (str): activation layer |
|
norm_layer (str): normalization layer |
|
""" |
|
|
|
def __init__(self, |
|
in_chans=3, |
|
out_chans=96, |
|
act_layer='GELU', |
|
norm_layer='BN'): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(in_chans, |
|
out_chans // 2, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
self.norm1 = build_norm_layer(out_chans // 2, norm_layer, |
|
'channels_first', 'channels_first') |
|
self.act = build_act_layer(act_layer) |
|
self.conv2 = nn.Conv2d(out_chans // 2, |
|
out_chans, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
self.norm2 = build_norm_layer(out_chans, norm_layer, 'channels_first', |
|
'channels_last') |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.act(x) |
|
x = self.conv2(x) |
|
x = self.norm2(x) |
|
return x |
|
|
|
|
|
class DownsampleLayer(nn.Module): |
|
r""" Downsample layer of InternImage |
|
Args: |
|
channels (int): number of input channels |
|
norm_layer (str): normalization layer |
|
""" |
|
|
|
def __init__(self, channels, norm_layer='LN'): |
|
super().__init__() |
|
self.conv = nn.Conv2d(channels, |
|
2 * channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False) |
|
self.norm = build_norm_layer(2 * channels, norm_layer, |
|
'channels_first', 'channels_last') |
|
|
|
def forward(self, x): |
|
x = self.conv(x.permute(0, 3, 1, 2)) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class MLPLayer(nn.Module): |
|
r""" MLP layer of InternImage |
|
Args: |
|
in_features (int): number of input features |
|
hidden_features (int): number of hidden features |
|
out_features (int): number of output features |
|
act_layer (str): activation layer |
|
drop (float): dropout rate |
|
""" |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer='GELU', |
|
drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = build_act_layer(act_layer) |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class InternImageLayer(nn.Module): |
|
r""" Basic layer of InternImage |
|
Args: |
|
core_op (nn.Module): core operation of InternImage |
|
channels (int): number of input channels |
|
groups (list): Groups of each block. |
|
mlp_ratio (float): ratio of mlp hidden features to input channels |
|
drop (float): dropout rate |
|
drop_path (float): drop path rate |
|
act_layer (str): activation layer |
|
norm_layer (str): normalization layer |
|
post_norm (bool): whether to use post normalization |
|
layer_scale (float): layer scale |
|
offset_scale (float): offset scale |
|
with_cp (bool): whether to use checkpoint |
|
""" |
|
|
|
def __init__(self, |
|
core_op, |
|
channels, |
|
groups, |
|
mlp_ratio=4., |
|
drop=0., |
|
drop_path=0., |
|
act_layer='GELU', |
|
norm_layer='LN', |
|
post_norm=False, |
|
layer_scale=None, |
|
offset_scale=1.0, |
|
with_cp=False): |
|
super().__init__() |
|
self.channels = channels |
|
self.groups = groups |
|
self.mlp_ratio = mlp_ratio |
|
self.with_cp = with_cp |
|
|
|
self.norm1 = build_norm_layer(channels, 'LN') |
|
self.post_norm = post_norm |
|
self.dcn = core_op(channels=channels, |
|
kernel_size=3, |
|
stride=1, |
|
pad=1, |
|
dilation=1, |
|
group=groups, |
|
offset_scale=offset_scale, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. \ |
|
else nn.Identity() |
|
self.norm2 = build_norm_layer(channels, 'LN') |
|
self.mlp = MLPLayer(in_features=channels, |
|
hidden_features=int(channels * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=drop) |
|
self.layer_scale = layer_scale is not None |
|
if self.layer_scale: |
|
self.gamma1 = nn.Parameter(layer_scale * torch.ones(channels), |
|
requires_grad=True) |
|
self.gamma2 = nn.Parameter(layer_scale * torch.ones(channels), |
|
requires_grad=True) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
if not self.layer_scale: |
|
if self.post_norm: |
|
x = x + self.drop_path(self.norm1(self.dcn(x))) |
|
x = x + self.drop_path(self.norm2(self.mlp(x))) |
|
else: |
|
x = x + self.drop_path(self.dcn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
if self.post_norm: |
|
x = x + self.drop_path(self.gamma1 * self.norm1(self.dcn(x))) |
|
x = x + self.drop_path(self.gamma2 * self.norm2(self.mlp(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma1 * self.dcn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
if self.with_cp and x.requires_grad: |
|
x = checkpoint.checkpoint(_inner_forward, x) |
|
else: |
|
x = _inner_forward(x) |
|
return x |
|
|
|
|
|
class InternImageBlock(nn.Module): |
|
r""" Block of InternImage |
|
Args: |
|
core_op (nn.Module): core operation of InternImage |
|
channels (int): number of input channels |
|
depths (list): Depth of each block. |
|
groups (list): Groups of each block. |
|
mlp_ratio (float): ratio of mlp hidden features to input channels |
|
drop (float): dropout rate |
|
drop_path (float): drop path rate |
|
act_layer (str): activation layer |
|
norm_layer (str): normalization layer |
|
post_norm (bool): whether to use post normalization |
|
layer_scale (float): layer scale |
|
offset_scale (float): offset scale |
|
with_cp (bool): whether to use checkpoint |
|
""" |
|
|
|
def __init__(self, |
|
core_op, |
|
channels, |
|
depth, |
|
groups, |
|
downsample=True, |
|
mlp_ratio=4., |
|
drop=0., |
|
drop_path=0., |
|
act_layer='GELU', |
|
norm_layer='LN', |
|
post_norm=False, |
|
offset_scale=1.0, |
|
layer_scale=None, |
|
with_cp=False): |
|
super().__init__() |
|
self.channels = channels |
|
self.depth = depth |
|
self.post_norm = post_norm |
|
|
|
self.blocks = nn.ModuleList([ |
|
InternImageLayer(core_op=core_op, |
|
channels=channels, |
|
groups=groups, |
|
mlp_ratio=mlp_ratio, |
|
drop=drop, |
|
drop_path=drop_path[i] if isinstance( |
|
drop_path, list) else drop_path, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
post_norm=post_norm, |
|
layer_scale=layer_scale, |
|
offset_scale=offset_scale, |
|
with_cp=with_cp) for i in range(depth) |
|
]) |
|
if not self.post_norm: |
|
self.norm = build_norm_layer(channels, 'LN') |
|
self.downsample = DownsampleLayer( |
|
channels=channels, norm_layer=norm_layer) if downsample else None |
|
|
|
def forward(self, x, return_wo_downsample=False): |
|
for blk in self.blocks: |
|
x = blk(x) |
|
if not self.post_norm: |
|
x = self.norm(x) |
|
if return_wo_downsample: |
|
x_ = x |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
if return_wo_downsample: |
|
return x, x_ |
|
return x |
|
|
|
|
|
class InternImage(nn.Module): |
|
r""" InternImage |
|
A PyTorch impl of : `InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions` - |
|
https://arxiv.org/pdf/2103.14030 |
|
Args: |
|
core_op (str): Core operator. Default: 'DCNv3' |
|
channels (int): Number of the first stage. Default: 64 |
|
depths (list): Depth of each block. Default: [3, 4, 18, 5] |
|
groups (list): Groups of each block. Default: [3, 6, 12, 24] |
|
num_classes (int): Number of classes. Default: 1000 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
drop_rate (float): Probability of an element to be zeroed. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
act_layer (str): Activation layer. Default: 'GELU' |
|
norm_layer (str): Normalization layer. Default: 'LN' |
|
layer_scale (bool): Whether to use layer scale. Default: False |
|
cls_scale (bool): Whether to use class scale. Default: False |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
""" |
|
|
|
def __init__(self, |
|
core_op='DCNv3_pytorch', |
|
channels=64, |
|
depths=[3, 4, 18, 5], |
|
groups=[3, 6, 12, 24], |
|
num_classes=1000, |
|
mlp_ratio=4., |
|
drop_rate=0., |
|
drop_path_rate=0.2, |
|
drop_path_type='linear', |
|
act_layer='GELU', |
|
norm_layer='LN', |
|
layer_scale=None, |
|
offset_scale=1.0, |
|
post_norm=False, |
|
cls_scale=1.5, |
|
with_cp=False, |
|
**kwargs): |
|
super().__init__() |
|
assert core_op == 'DCNv3_pytorch' |
|
core_op = DCNv3_pytorch |
|
|
|
self.core_op = core_op |
|
self.num_classes = num_classes |
|
self.num_levels = len(depths) |
|
self.depths = depths |
|
self.channels = channels |
|
self.num_features = int(channels * 2**(self.num_levels - 1)) |
|
self.post_norm = post_norm |
|
self.mlp_ratio = mlp_ratio |
|
print(f'using core type: {core_op}') |
|
print(f'using activation layer: {act_layer}') |
|
print(f'using main norm layer: {norm_layer}') |
|
print(f'using dpr: {drop_path_type}, {drop_path_rate}') |
|
|
|
in_chans = 3 |
|
self.patch_embed = StemLayer(in_chans=in_chans, |
|
out_chans=channels, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] |
|
if drop_path_type == 'uniform': |
|
for i in range(len(dpr)): |
|
dpr[i] = drop_path_rate |
|
|
|
self.levels = nn.ModuleList() |
|
for i in range(self.num_levels): |
|
level = InternImageBlock( |
|
core_op=core_op, |
|
channels=int(channels * 2**i), |
|
depth=depths[i], |
|
groups=groups[i], |
|
mlp_ratio=self.mlp_ratio, |
|
drop=drop_rate, |
|
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
post_norm=post_norm, |
|
downsample=(i < self.num_levels - 1), |
|
layer_scale=layer_scale, |
|
offset_scale=offset_scale, |
|
with_cp=with_cp) |
|
self.levels.append(level) |
|
|
|
self.conv_head = nn.Sequential( |
|
nn.Conv2d(self.num_features, |
|
int(self.num_features * cls_scale), |
|
kernel_size=1, |
|
bias=False), |
|
build_norm_layer(int(self.num_features * cls_scale), 'BN', |
|
'channels_first', 'channels_first'), |
|
build_act_layer(act_layer)) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.head = nn.Linear(int(self.num_features * cls_scale), num_classes) \ |
|
if num_classes > 0 else nn.Identity() |
|
self.num_layers = len(depths) |
|
self.apply(self._init_weights) |
|
self.apply(self._init_deform_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def _init_deform_weights(self, m): |
|
if isinstance(m, self.core_op): |
|
m._reset_parameters() |
|
|
|
@torch.jit.ignore |
|
def lr_decay_keywards(self, decay_ratio=0.87): |
|
lr_ratios = {} |
|
|
|
|
|
idx = 0 |
|
for i in range(4): |
|
layer_num = 3 - i |
|
for j in range(self.depths[layer_num]): |
|
block_num = self.depths[layer_num] - j - 1 |
|
tag = 'levels.{}.blocks.{}.'.format(layer_num, block_num) |
|
decay = 1.0 * (decay_ratio**idx) |
|
lr_ratios[tag] = decay |
|
idx += 1 |
|
|
|
lr_ratios["patch_embed"] = lr_ratios['levels.0.blocks.0.'] |
|
|
|
lr_ratios["levels.0.downsample"] = lr_ratios['levels.1.blocks.0.'] |
|
lr_ratios["levels.0.norm"] = lr_ratios['levels.1.blocks.0.'] |
|
|
|
lr_ratios["levels.1.downsample"] = lr_ratios['levels.2.blocks.0.'] |
|
lr_ratios["levels.1.norm"] = lr_ratios['levels.2.blocks.0.'] |
|
|
|
lr_ratios["levels.2.downsample"] = lr_ratios['levels.3.blocks.0.'] |
|
lr_ratios["levels.2.norm"] = lr_ratios['levels.3.blocks.0.'] |
|
return lr_ratios |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = self.pos_drop(x) |
|
|
|
for level in self.levels: |
|
x = level(x) |
|
|
|
x = self.conv_head(x.permute(0, 3, 1, 2)) |
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
return x |
|
|
|
def forward_features_seq_out(self, x): |
|
x = self.patch_embed(x) |
|
x = self.pos_drop(x) |
|
|
|
seq_out = [] |
|
for level in self.levels: |
|
x, x_ = level(x, return_wo_downsample=True) |
|
seq_out.append(x_) |
|
return seq_out |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
class InternImageModel(PreTrainedModel): |
|
config_class = InternImageConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternImage( |
|
core_op=config.core_op, |
|
channels=config.channels, |
|
depths=config.depths, |
|
groups=config.groups, |
|
num_classes=config.num_classes, |
|
mlp_ratio=config.mlp_ratio, |
|
drop_rate=config.drop_rate, |
|
drop_path_rate=config.drop_path_rate, |
|
drop_path_type=config.drop_path_type, |
|
act_layer=config.act_layer, |
|
norm_layer=config.norm_layer, |
|
layer_scale=config.layer_scale, |
|
offset_scale=config.offset_scale, |
|
post_norm=config.post_norm, |
|
cls_scale=config.cls_scale, |
|
with_cp=config.with_cp, |
|
) |
|
|
|
def forward(self, tensor): |
|
return self.model.forward_features(tensor) |
|
|
|
class InternImageModelForImageClassification(PreTrainedModel): |
|
config_class = InternImageConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternImage( |
|
core_op=config.core_op, |
|
channels=config.channels, |
|
depths=config.depths, |
|
groups=config.groups, |
|
num_classes=config.num_classes, |
|
mlp_ratio=config.mlp_ratio, |
|
drop_rate=config.drop_rate, |
|
drop_path_rate=config.drop_path_rate, |
|
drop_path_type=config.drop_path_type, |
|
act_layer=config.act_layer, |
|
norm_layer=config.norm_layer, |
|
layer_scale=config.layer_scale, |
|
offset_scale=config.offset_scale, |
|
post_norm=config.post_norm, |
|
cls_scale=config.cls_scale, |
|
with_cp=config.with_cp, |
|
) |
|
|
|
def forward(self, tensor, labels=None): |
|
logits = self.model(tensor) |
|
|
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
return {'loss': loss, 'logits': logits} |
|
|
|
return {'logits': logits} |
|
|