|
from transformers import PretrainedConfig |
|
|
|
class InternImageConfig(PretrainedConfig): |
|
model_type = "intern_image" |
|
|
|
def __init__( |
|
self, |
|
core_op='DCNv3_pytorch', |
|
channels=64, |
|
depths=(4, 4, 18, 4), |
|
groups=(4, 8, 16, 32), |
|
num_classes=1000, |
|
mlp_ratio=4., |
|
drop_rate=0., |
|
drop_path_rate=0.1, |
|
drop_path_type='linear', |
|
act_layer='GELU', |
|
norm_layer='LN', |
|
layer_scale=None, |
|
offset_scale=1.0, |
|
post_norm=False, |
|
cls_scale=1.5, |
|
with_cp=False, |
|
**kwargs, |
|
): |
|
self.core_op = core_op |
|
self.channels = channels |
|
self.depths = depths |
|
self.groups = groups |
|
self.num_classes = num_classes |
|
self.mlp_ratio = mlp_ratio |
|
self.drop_rate = drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.drop_path_type = drop_path_type |
|
self.act_layer = act_layer |
|
self.norm_layer = norm_layer |
|
self.layer_scale = layer_scale |
|
self.offset_scale = offset_scale |
|
self.post_norm = post_norm |
|
self.cls_scale = cls_scale |
|
self.with_cp = with_cp |
|
super().__init__(**kwargs) |
|
|