|
|
|
|
|
|
|
|
|
|
|
|
|
import contextlib |
|
import math |
|
import warnings |
|
from functools import partial |
|
from typing import Tuple, Type |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, Tensor |
|
|
|
from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis |
|
from sam2.modeling.sam2_utils import MLP |
|
from sam2.utils.misc import get_sdpa_settings |
|
|
|
warnings.simplefilter(action="ignore", category=FutureWarning) |
|
|
|
OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() |
|
|
|
ALLOW_ALL_KERNELS = False |
|
|
|
|
|
def sdp_kernel_context(dropout_p): |
|
""" |
|
Get the context for the attention scaled dot-product kernel. We use Flash Attention |
|
by default, but fall back to all available kernels if Flash Attention fails. |
|
""" |
|
if ALLOW_ALL_KERNELS: |
|
return contextlib.nullcontext() |
|
|
|
return torch.backends.cuda.sdp_kernel( |
|
enable_flash=USE_FLASH_ATTN, |
|
|
|
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, |
|
enable_mem_efficient=OLD_GPU, |
|
) |
|
|
|
|
|
class TwoWayTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
depth: int, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
) -> None: |
|
""" |
|
A transformer decoder that attends to an input image using |
|
queries whose positional embedding is supplied. |
|
|
|
Args: |
|
depth (int): number of layers in the transformer |
|
embedding_dim (int): the channel dimension for the input embeddings |
|
num_heads (int): the number of heads for multihead attention. Must |
|
divide embedding_dim |
|
mlp_dim (int): the channel dimension internal to the MLP block |
|
activation (nn.Module): the activation to use in the MLP block |
|
""" |
|
super().__init__() |
|
self.depth = depth |
|
self.embedding_dim = embedding_dim |
|
self.num_heads = num_heads |
|
self.mlp_dim = mlp_dim |
|
self.layers = nn.ModuleList() |
|
|
|
for i in range(depth): |
|
self.layers.append( |
|
TwoWayAttentionBlock( |
|
embedding_dim=embedding_dim, |
|
num_heads=num_heads, |
|
mlp_dim=mlp_dim, |
|
activation=activation, |
|
attention_downsample_rate=attention_downsample_rate, |
|
skip_first_layer_pe=(i == 0), |
|
) |
|
) |
|
|
|
self.final_attn_token_to_image = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
self.norm_final_attn = nn.LayerNorm(embedding_dim) |
|
|
|
def forward( |
|
self, |
|
image_embedding: Tensor, |
|
image_pe: Tensor, |
|
point_embedding: Tensor, |
|
) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Args: |
|
image_embedding (torch.Tensor): image to attend to. Should be shape |
|
B x embedding_dim x h x w for any h and w. |
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must |
|
have the same shape as image_embedding. |
|
point_embedding (torch.Tensor): the embedding to add to the query points. |
|
Must have shape B x N_points x embedding_dim for any N_points. |
|
|
|
Returns: |
|
torch.Tensor: the processed point_embedding |
|
torch.Tensor: the processed image_embedding |
|
""" |
|
|
|
bs, c, h, w = image_embedding.shape |
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1) |
|
image_pe = image_pe.flatten(2).permute(0, 2, 1) |
|
|
|
|
|
queries = point_embedding |
|
keys = image_embedding |
|
|
|
|
|
for layer in self.layers: |
|
queries, keys = layer( |
|
queries=queries, |
|
keys=keys, |
|
query_pe=point_embedding, |
|
key_pe=image_pe, |
|
) |
|
|
|
|
|
q = queries + point_embedding |
|
k = keys + image_pe |
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm_final_attn(queries) |
|
|
|
return queries, keys |
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int = 2048, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
skip_first_layer_pe: bool = False, |
|
) -> None: |
|
""" |
|
A transformer block with four layers: (1) self-attention of sparse |
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp |
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse |
|
inputs. |
|
|
|
Arguments: |
|
embedding_dim (int): the channel dimension of the embeddings |
|
num_heads (int): the number of heads in the attention layers |
|
mlp_dim (int): the hidden dimension of the mlp block |
|
activation (nn.Module): the activation of the mlp block |
|
skip_first_layer_pe (bool): skip the PE on the first layer |
|
""" |
|
super().__init__() |
|
self.self_attn = Attention(embedding_dim, num_heads) |
|
self.norm1 = nn.LayerNorm(embedding_dim) |
|
|
|
self.cross_attn_token_to_image = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
self.norm2 = nn.LayerNorm(embedding_dim) |
|
|
|
self.mlp = MLP( |
|
embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation |
|
) |
|
self.norm3 = nn.LayerNorm(embedding_dim) |
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim) |
|
self.cross_attn_image_to_token = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe |
|
|
|
def forward( |
|
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor |
|
) -> Tuple[Tensor, Tensor]: |
|
|
|
if self.skip_first_layer_pe: |
|
queries = self.self_attn(q=queries, k=queries, v=queries) |
|
else: |
|
q = queries + query_pe |
|
attn_out = self.self_attn(q=q, k=q, v=queries) |
|
queries = queries + attn_out |
|
queries = self.norm1(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm2(queries) |
|
|
|
|
|
mlp_out = self.mlp(queries) |
|
queries = queries + mlp_out |
|
queries = self.norm3(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) |
|
keys = keys + attn_out |
|
keys = self.norm4(keys) |
|
|
|
return queries, keys |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
An attention layer that allows for downscaling the size of the embedding |
|
after projection to queries, keys, and values. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
downsample_rate: int = 1, |
|
dropout: float = 0.0, |
|
kv_in_dim: int = None, |
|
) -> None: |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim |
|
self.internal_dim = embedding_dim // downsample_rate |
|
self.num_heads = num_heads |
|
assert ( |
|
self.internal_dim % num_heads == 0 |
|
), "num_heads must divide embedding_dim." |
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim) |
|
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) |
|
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) |
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim) |
|
|
|
self.dropout_p = dropout |
|
|
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: |
|
b, n, c = x.shape |
|
x = x.reshape(b, n, num_heads, c // num_heads) |
|
return x.transpose(1, 2) |
|
|
|
def _recombine_heads(self, x: Tensor) -> Tensor: |
|
b, n_heads, n_tokens, c_per_head = x.shape |
|
x = x.transpose(1, 2) |
|
return x.reshape(b, n_tokens, n_heads * c_per_head) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: |
|
|
|
q = self.q_proj(q) |
|
k = self.k_proj(k) |
|
v = self.v_proj(v) |
|
|
|
|
|
q = self._separate_heads(q, self.num_heads) |
|
k = self._separate_heads(k, self.num_heads) |
|
v = self._separate_heads(v, self.num_heads) |
|
|
|
dropout_p = self.dropout_p if self.training else 0.0 |
|
|
|
try: |
|
with sdp_kernel_context(dropout_p): |
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
except Exception as e: |
|
|
|
warnings.warn( |
|
f"Flash Attention kernel failed due to: {e}\nFalling back to all available " |
|
f"kernels for scaled_dot_product_attention (which may have a slower speed).", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
global ALLOW_ALL_KERNELS |
|
ALLOW_ALL_KERNELS = True |
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
|
|
out = self._recombine_heads(out) |
|
out = self.out_proj(out) |
|
|
|
return out |
|
|
|
|
|
class RoPEAttention(Attention): |
|
"""Attention with rotary position encoding.""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
rope_theta=10000.0, |
|
|
|
|
|
rope_k_repeat=False, |
|
feat_sizes=(32, 32), |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.compute_cis = partial( |
|
compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta |
|
) |
|
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) |
|
self.freqs_cis = freqs_cis |
|
self.rope_k_repeat = rope_k_repeat |
|
|
|
def forward( |
|
self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 |
|
) -> Tensor: |
|
|
|
q = self.q_proj(q) |
|
k = self.k_proj(k) |
|
v = self.v_proj(v) |
|
|
|
|
|
q = self._separate_heads(q, self.num_heads) |
|
k = self._separate_heads(k, self.num_heads) |
|
v = self._separate_heads(v, self.num_heads) |
|
|
|
|
|
w = h = math.sqrt(q.shape[-2]) |
|
self.freqs_cis = self.freqs_cis.to(q.device) |
|
if self.freqs_cis.shape[0] != q.shape[-2]: |
|
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) |
|
if q.shape[-2] != k.shape[-2]: |
|
assert self.rope_k_repeat |
|
|
|
num_k_rope = k.size(-2) - num_k_exclude_rope |
|
q, k[:, :, :num_k_rope] = apply_rotary_enc( |
|
q, |
|
k[:, :, :num_k_rope], |
|
freqs_cis=self.freqs_cis, |
|
repeat_freqs_k=self.rope_k_repeat, |
|
) |
|
|
|
dropout_p = self.dropout_p if self.training else 0.0 |
|
|
|
try: |
|
with sdp_kernel_context(dropout_p): |
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
except Exception as e: |
|
|
|
warnings.warn( |
|
f"Flash Attention kernel failed due to: {e}\nFalling back to all available " |
|
f"kernels for scaled_dot_product_attention (which may have a slower speed).", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
global ALLOW_ALL_KERNELS |
|
ALLOW_ALL_KERNELS = True |
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
|
|
out = self._recombine_heads(out) |
|
out = self.out_proj(out) |
|
|
|
return out |
|
|