|
|
|
""" |
|
Various positional encodings for the transformer. |
|
""" |
|
import math |
|
import torch |
|
from torch import nn |
|
|
|
|
|
class TrainablePositionalEncoding(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings. |
|
""" |
|
def __init__(self, max_position_embeddings, hidden_size, dropout=0.1): |
|
super(TrainablePositionalEncoding, self).__init__() |
|
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) |
|
self.LayerNorm = nn.LayerNorm(hidden_size) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, input_feat): |
|
""" |
|
Args: |
|
input_feat: (N, L, D) |
|
""" |
|
bsz, seq_length = input_feat.shape[:2] |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device) |
|
position_ids = position_ids.unsqueeze(0).repeat(bsz, 1) |
|
|
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
embeddings = self.LayerNorm(input_feat + position_embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. (To 1D sequences) |
|
""" |
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, x, mask): |
|
""" |
|
Args: |
|
x: torch.tensor, (batch_size, L, d) |
|
mask: torch.tensor, (batch_size, L), with 1 as valid |
|
|
|
Returns: |
|
|
|
""" |
|
assert mask is not None |
|
x_embed = mask.cumsum(1, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, None] / dim_t |
|
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) |
|
|
|
return pos_x |
|
|
|
|
|
class PositionEmbeddingLearned(nn.Module): |
|
""" |
|
Absolute pos embedding, learned. |
|
""" |
|
def __init__(self, num_pos_feats=256): |
|
super().__init__() |
|
self.row_embed = nn.Embedding(50, num_pos_feats) |
|
self.col_embed = nn.Embedding(50, num_pos_feats) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.uniform_(self.row_embed.weight) |
|
nn.init.uniform_(self.col_embed.weight) |
|
|
|
def forward(self, x, mask): |
|
h, w = x.shape[-2:] |
|
i = torch.arange(w, device=x.device) |
|
j = torch.arange(h, device=x.device) |
|
x_emb = self.col_embed(i) |
|
y_emb = self.row_embed(j) |
|
pos = torch.cat([ |
|
x_emb.unsqueeze(0).repeat(h, 1, 1), |
|
y_emb.unsqueeze(1).repeat(1, w, 1), |
|
], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) |
|
return pos |
|
|
|
|
|
def build_position_encoding(args): |
|
N_steps = args.hidden_dim |
|
if args.position_embedding in ('v2', 'sine'): |
|
|
|
position_embedding = PositionEmbeddingSine(N_steps, normalize=True) |
|
|
|
|
|
else: |
|
raise ValueError(f"not supported {args.position_embedding}") |
|
if args.max_q_l == -1: |
|
args.max_q_l = 100 |
|
txt_pos_embed = TrainablePositionalEncoding( |
|
max_position_embeddings=args.max_q_l, |
|
hidden_size=args.hidden_dim, dropout=args.input_dropout) |
|
return position_embedding, txt_pos_embed |
|
|