File size: 5,727 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


import copy

import torch
import torch.nn as nn
import torch.nn.functional as F


def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
    """
    Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
    that are temporally closest to the current frame at `frame_idx`. Here, we take
    - a) the closest conditioning frame before `frame_idx` (if any);
    - b) the closest conditioning frame after `frame_idx` (if any);
    - c) any other temporally closest conditioning frames until reaching a total
         of `max_cond_frame_num` conditioning frames.

    Outputs:
    - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
    - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
    """
    if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
        selected_outputs = cond_frame_outputs
        unselected_outputs = {}
    else:
        assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
        selected_outputs = {}

        # the closest conditioning frame before `frame_idx` (if any)
        idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
        if idx_before is not None:
            selected_outputs[idx_before] = cond_frame_outputs[idx_before]

        # the closest conditioning frame after `frame_idx` (if any)
        idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
        if idx_after is not None:
            selected_outputs[idx_after] = cond_frame_outputs[idx_after]

        # add other temporally closest conditioning frames until reaching a total
        # of `max_cond_frame_num` conditioning frames.
        num_remain = max_cond_frame_num - len(selected_outputs)
        inds_remain = sorted(
            (t for t in cond_frame_outputs if t not in selected_outputs),
            key=lambda x: abs(x - frame_idx),
        )[:num_remain]
        selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
        unselected_outputs = {
            t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
        }

    return selected_outputs, unselected_outputs


def get_1d_sine_pe(pos_inds, dim, temperature=10000):
    """
    Get 1D sine positional embedding as in the original Transformer paper.
    """
    pe_dim = dim // 2
    dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
    dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)

    pos_embed = pos_inds.unsqueeze(-1) / dim_t
    pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
    return pos_embed


def get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(f"activation should be relu/gelu, not {activation}.")


def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


class DropPath(nn.Module):
    # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
    def __init__(self, drop_prob=0.0, scale_by_keep=True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        if self.drop_prob == 0.0 or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor


# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        activation: nn.Module = nn.ReLU,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output
        self.act = activation()

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x


# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x