File size: 20,691 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from functools import partial

from timm.models.layers import drop_path, to_2tuple, trunc_normal_

logger = logging.getLogger(__name__)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        **kwargs
    }

class MLP(nn.Module):
    """Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers, dropout=0):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.dropout = dropout
        if dropout:
            self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
            if self.dropout and i < self.num_layers:
                x = self.dropout(x)
        return x

class PostProcess(nn.Module):
    """ This module converts the model's output into the format expected by the coco api"""
    
    @torch.no_grad()
    def forward(self, out_sted, frames_id):
        """Perform the computation for inference evaluation
        """
        # import pdb; pdb.set_trace()

        b, t, _ = out_sted.shape
        device = out_sted.device
        temp_prob_map = torch.zeros(b,t,t).to(device)
        inf = -1e32
        for i_b in range(len(frames_id)): 
            duration = len(frames_id[0])
            sted_prob = (torch.ones(t, t) * inf).tril(0).to(device)
            sted_prob[duration:,:] = inf
            sted_prob[:,duration:] = inf
            temp_prob_map[i_b,:,:] = sted_prob
        
        temp_prob_map += F.log_softmax(out_sted[:, :, 0], dim=1).unsqueeze(2) + \
                F.log_softmax(out_sted[:, :, 1], dim=1).unsqueeze(1)
        
        pred_steds = []
        for i_b in range(b):
            prob_map = temp_prob_map[i_b]  # [T * T]
            frame_id_seq = frames_id[i_b]
            prob_seq = prob_map.flatten(0)  
            max_tstamp = prob_seq.max(dim=0)[1].item()
            start_idx = max_tstamp // t
            end_idx = max_tstamp % t
            pred_sted = [frame_id_seq[start_idx], frame_id_seq[end_idx]+1]
            pred_steds.append(pred_sted)
    
        return pred_steds

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
    
    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))
        
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 attn_head_dim=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x):
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.tubelet_size = int(tubelet_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.proj = nn.Conv3d(
            in_channels=in_chans, out_channels=embed_dim, 
            kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), 
            stride=(self.tubelet_size, patch_size[0], patch_size[1])
        )
        logger.info(f'Num of patches: {num_patches}')

    def forward(self, x, **kwargs):
        B, C, T, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x
    
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12): 
    ''' Sinusoid position encoding table ''' 
    # TODO: make it with torch instead of numpy 
    def get_position_angle_vec(position): 
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] 
    
    if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame:
        logger.info(f"Interpolate position embedding")
        logger.info(f"Testing frame: {cur_frame}")
        logger.info(f"Checkpoint frame: {ckpt_num_frame}")

        T = ckpt_num_frame # checkpoint frame
        new_T = cur_frame # testing frame
        n_position = n_position // new_T * T # generate checkpoint position embedding
        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) 
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 
        sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
        # interpolate
        P = int((n_position // T) ** 0.5)
        C = d_hid
        sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
        sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T)  # BHW, C, T
        sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
        sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
        sinusoid_table = sinusoid_table.flatten(1, 3)
        return sinusoid_table
    else:
        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) 
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 
        return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) 
    

def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784): 
    ''' Sinusoid position encoding table ''' 
    # TODO: make it with torch instead of numpy 
    def get_position_angle_vec(position): 
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] 
    
    # generate checkpoint position embedding
    sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) 
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 
    sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
    
    print(f"n_position: {n_position}")
    print(f"pre_n_position: {pre_n_position}")
    
    if n_position != pre_n_position:
        T = ckpt_num_frame # checkpoint frame
        P = 14 # checkpoint size
        C = d_hid
        new_P = int((n_position // cur_frame) ** 0.5) # testing size
        print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}')
        print(f'Interpolate the position embedding')
        sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
        sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2)
        sinusoid_table = torch.nn.functional.interpolate(
            sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False)
        # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
        sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C)
        sinusoid_table = sinusoid_table.flatten(1, 3)  # B, THW, C
    
    if cur_frame != ckpt_num_frame:
        print(f'Pretraining uses 4 frames, but current frame is {cur_frame}')
        print(f'Interpolate the position embedding')
        T = ckpt_num_frame # checkpoint frame
        new_T = cur_frame # testing frame
        # interpolate
        P = int((n_position // cur_frame) ** 0.5) # testing size
        C = d_hid
        sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
        sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T)  # BHW, C, T
        sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
        sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
        sinusoid_table = sinusoid_table.flatten(1, 3)  # B, THW, C
        
    return sinusoid_table


class PretrainVisionTransformerEncoder(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1,
                 use_learnable_pos_emb=False,
                 use_checkpoint=False, checkpoint_num=0, 
                 ckpt_num_frame=-1, with_ln=True, return_index=-1
                 ):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, 
            num_frames=num_frames, tubelet_size=tubelet_size
        )
        num_patches = self.patch_embed.num_patches
        self.depth = depth + return_index + 1
        self.use_checkpoint = use_checkpoint
        self.checkpoint_num = checkpoint_num
        logger.info(f"Use checkpoint: {use_checkpoint}")
        logger.info(f"Checkpoint number: {checkpoint_num}")
        logger.info(f"Real runing depth: {self.depth}")

        # TODO: Add the cls token
        if use_learnable_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
            self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim))
        else:
            # sine-cosine positional embeddings 
            if img_size != 224:
                self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
                self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14)
            else:
                self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
                self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values)
            for i in range(self.depth)])
        
        if with_ln:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = nn.Identity()

        if use_learnable_pos_emb:
            trunc_normal_(self.pos_embed, std=.02)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward_features(self, x, use_image=False):
        x = self.patch_embed(x)
        
        if use_image:
            x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach()
        else:
            x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()

        B, _, C = x.shape
        x_vis = x

        for idx, blk in enumerate(self.blocks):
            if self.use_checkpoint and idx < self.checkpoint_num:
                x_vis = checkpoint.checkpoint(blk, x_vis)
            else:
                x_vis = blk(x_vis)

        # with ln ot not
        x_vis = self.norm(x_vis)
        return x_vis

    def forward(self, x, use_image=False):
        x_vis = self.forward_features(x, use_image)
        return x_vis


class PretrainVisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self,
                 img_size=224, 
                 patch_size=16, 
                 encoder_in_chans=3, 
                 encoder_embed_dim=768, 
                 encoder_depth=12,
                 encoder_num_heads=12, 
                 mlp_ratio=4., 
                 qkv_bias=True, 
                 qk_scale=None, 
                 drop_rate=0., 
                 attn_drop_rate=0.,
                 drop_path_rate=0., 
                 norm_layer=partial(nn.LayerNorm, eps=1e-6), 
                 init_values=0.,
                 use_learnable_pos_emb=False,
                 num_frames=8,
                 tubelet_size=1,
                 use_checkpoint=False,
                 checkpoint_num=0,
                 ckpt_num_frame=4, # the pretrained model uses 4 frames
                 return_index=-1,
                 with_ln=False
                ):
        super().__init__()

        self.encoder = PretrainVisionTransformerEncoder(
            img_size=img_size, 
            patch_size=patch_size, 
            in_chans=encoder_in_chans, 
            embed_dim=encoder_embed_dim, 
            depth=encoder_depth,
            num_heads=encoder_num_heads, 
            mlp_ratio=mlp_ratio, 
            qkv_bias=qkv_bias, 
            qk_scale=qk_scale, 
            drop_rate=drop_rate, 
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate, 
            norm_layer=norm_layer, 
            init_values=init_values,
            num_frames=num_frames,
            tubelet_size=tubelet_size,
            use_learnable_pos_emb=use_learnable_pos_emb,
            use_checkpoint=use_checkpoint,
            checkpoint_num=checkpoint_num,
            ckpt_num_frame=ckpt_num_frame,
            with_ln=with_ln,
            return_index=return_index
        )
        logger.info(f'With LN: {with_ln}')
        logger.info(f'Total {encoder_depth} layer')
        logger.info(f'Return {encoder_depth+return_index+1}-th layer')

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'clip_pos_embed'}

    def forward(self, x, use_image=False):
        T = x.shape[2]
        x_vis = self.encoder(x, use_image) # [B, N_vis, C_e]
        B, TL, C = x_vis.shape
        x_vis = x_vis.view(B, T, TL // T, C)

        return x_vis


def build_vit(config):
    model = PretrainVisionTransformer(
        img_size=config.vision_encoder.img_size, 
        patch_size=config.vision_encoder.patch_size, 
        encoder_embed_dim=config.vision_encoder.encoder_embed_dim, 
        encoder_depth=config.vision_encoder.encoder_depth,
        encoder_num_heads=config.vision_encoder.encoder_num_heads, 
        drop_path_rate=config.vision_encoder.drop_path_rate, 
        num_frames=config.vision_encoder.num_frames,
        tubelet_size=config.vision_encoder.tubelet_size,
        use_checkpoint=config.vision_encoder.use_checkpoint,
        checkpoint_num=config.vision_encoder.checkpoint_num,
        return_index=config.vision_encoder.get('return_index', -1),
        with_ln=config.vision_encoder.get('with_ln', False),
    )
    model.default_cfg = _cfg()
    if config.vision_encoder.pretrained:
        logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
        state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
        model.load_state_dict(state_dict, strict=False)
    else:
        logger.info("No pretrained weights!!!")
    return model