File size: 17,178 Bytes
16dc4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import io
import logging
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
from typing import List, Optional, Tuple, Union
from transformers import LlamaForCausalLM
from torch.cuda.amp import autocast as autocast
from .modeling_vit import build_vit
from .modeling_qformer import build_qformer
from .model_config import VideoChatEConfig
logger = logging.getLogger(__name__)
from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor
from transformers import AutoConfig, PreTrainedModel
import os
import sys
try:
from third_party.sam2.build_sam import build_sam2_video_predictor
from third_party.cgdetr.cg_detr.model import build_cgdetr_model
except:
print("can not import sam2 and cg-detr, install them first.")
DEFAULT_IMG_TOKEN = "[IMG]"
DEFAULT_IMG_END_TOKEN = "[/IMG]"
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_VIDEO_TOKEN = "[VIDEO]"
IMG_TOKEN = "[<IMG_PLH>]"
VID_TOKEN = "[<VID_PLH>]"
BOX_START = '<box_begin>'
# BOX_END = '<box_end>'
ATBOXES_PLACEHOLDER = '<box_begin><boxes>'
# ATBOXES_PLACEHOLDER = '<box_begin>'
BOXES_PLACEHOLDER = '<boxes>'
EXPR_PLACEHOLDER = '<expr>'
QUESTION_PLACEHOLDER = '<question>'
TIME_START = '<time_begin>'
# TIME_END = '<time_end>'
TIME_PLACEHOLDER = '<temp>'
ATTEMP_PLACEHOLDER = TIME_START + TIME_PLACEHOLDER
# ATTEMP_PLACEHOLDER = TIME_START
TRACK_START='<track_begin>'
TRACK_PLACEHOLDER = '<tracking>'
TRACK_START_BOX = '<track_box>'
ATTRACK_PLACEHOLDER = TRACK_START + TRACK_PLACEHOLDER
need_template_list = ['REC', 'flickr', 'tracking', 'tracking2', 'tracking3', 'tracking4']
load_image_list = ['image', 'REC', 'flickr']
load_video_list = ['video', 'TVG', 'tracking', 'tracking2','tracking3', 'tracking4', 'TVG+HL']
special_tokens = [BOX_START, TIME_START, TIME_PLACEHOLDER, BOXES_PLACEHOLDER, TRACK_START, TRACK_PLACEHOLDER, TRACK_START_BOX]
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def freeze_module(module):
for _, param in module.named_parameters():
param.requires_grad = False
module = module.eval()
module.train = disabled_train
return module
class LLMConfig(AutoConfig):
model_type = "20b"
class BaseMLLM(PreTrainedModel):
config_class = VideoChatEConfig
def __init__(self, config,_tokenizer=None):
# super().__init__(config)
self.model_config = config.model_config
self.tokenizer = _tokenizer
config.cg_opt = None
config.model_config = None
config.model_tokenizer = None
super().__init__(config)
self.build_vision_encoder()
self.build_llm()
self.build_bridge()
self.build_loss()
self.load_pretrained_weights()
try:
if config.build_decoder:
self.cg_opt = config.cg_opt
self.build_bbox_decoder()
self.build_sam()
self.build_CGDETR()
except:
print("please install cgdetr and sam2 first")
logger.info(f'Length of tokenizer and resize embedding: {len(self.tokenizer)}')
def build_vision_encoder(self):
if 'internvideo2' in self.model_config.vision_encoder.name.lower():
encoder_name = self.model_config.vision_encoder.name
logger.info(f"Build vision_encoder: {encoder_name}")
if encoder_name == 'internvideo2-1B':
self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config)
else:
raise ValueError(f"Not implemented: {encoder_name}")
elif 'vit' in self.model_config.vision_encoder.name.lower():
self.vision_encoder = build_vit(self.model_config)
else:
raise NotImplementedError(self.model_config.vision_encoder.name)
if self.model_config.vision_encoder.vit_add_ln:
self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12)
else:
self.vision_layernorm = nn.Identity()
self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False)
if self.freeze_vision_encoder:
logger.info("freeze vision encoder")
freeze_module(self.vision_encoder)
freeze_module(self.vision_layernorm)
def build_CGDETR(self):
self.cg_model, self.cg_criterion = build_cgdetr_model()
def build_bridge(self):
# ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim
self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed?
# LM to ViT: 6656 -> 1792
self.project_down = nn.Linear(self.lm.config.hidden_size, 768)
if 'qformer' in self.model_config.bridge.name.lower():
from transformers import BertTokenizer
self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left")
self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
self.qformer_tokenizer.padding_side = "left"
if self.model_config.bridge.name == 'qformer':
self.qformer, self.query_tokens = build_qformer(
self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob,
qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate,
)
elif self.model_config.bridge.name == 'causal_qformer':
self.qformer, self.query_tokens = build_causal_qformer(
self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob
)
self.qformer.resize_token_embeddings(len(self.qformer_tokenizer))
self.qformer.cls = None
self.extra_num_query_token = self.model_config.bridge.extra_num_query_token
if self.model_config.bridge.extra_num_query_token > 0:
logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer")
self.extra_query_tokens = nn.Parameter(
torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1])
)
self.freeze_bridge = self.model_config.get("freeze_bridge", False)
if self.freeze_bridge:
logger.info("freeze bridge")
freeze_module(self.qformer)
self.query_tokens.requires_grad = False
def build_llm(self):
self.lm_name = self.model_config.llm.name
if self.model_config.llm.name == "vicuna1.5_7b":
self.lm = LlamaForCausalLM.from_pretrained(self.model_config.llm.pretrained_llm_path)
self.lm.gradient_checkpointing = self.model_config.llm.get("use_llama_gradient_checkpointing", True)
elif self.model_config.llm.name == 'mistral_7b':
from transformers import AutoModelForCausalLM
config = AutoConfig.from_pretrained(
self.model_config.llm.pretrained_llm_path,
torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
)
self.lm = AutoModelForCausalLM.from_config(config)
elif self.model_config.llm.name == 'internlm_20b':
from transformers import AutoModelForCausalLM
self.lm = AutoModelForCausalLM.from_pretrained(
self.model_config.llm.pretrained_llm_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
self.lm.gradient_checkpointing = True
self.lm._set_gradient_checkpointing()
else:
raise NotImplementedError(self.model_config.llm.name)
num_new_tokens = len(special_tokens)
self.lm.resize_token_embeddings(len(self.tokenizer))
input_embeddings = self.lm.get_input_embeddings().weight.data
output_embeddings = self.lm.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0]
self.freeze_llm = self.model_config.get("freeze_llm", True)
logger.info(f'freeze_llm: {self.freeze_llm}')
if self.freeze_llm:
logger.info("freeze llm")
freeze_module(self.lm)
if self.model_config.llm.use_lora:
self.use_lora = True
from peft import get_peft_model, LoraConfig, TaskType
logger.info("Use lora")
if self.model_config.llm.name == 'internlm_20b':
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output']
)
else:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj", "lm_head"]
)
self.lm = get_peft_model(self.lm, peft_config)
self.lm.enable_input_require_grads()
self.lm.print_trainable_parameters()
if self.model_config.get("freeze_lora", False):
logger.info("freeze lora")
freeze_module(self.lm)
self.lm.print_trainable_parameters()
else:
self.use_lora = False
def add_lora(self):
if self.model_config.llm.use_lora:
self.use_lora = True
from peft import get_peft_model, LoraConfig, TaskType
logger.info("Use lora")
if self.model_config.llm.name == 'internlm_20b':
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output']
)
else:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj", "lm_head"]
)
self.lm = get_peft_model(self.lm, peft_config)
self.lm.enable_input_require_grads()
self.lm.print_trainable_parameters()
if self.model_config.get("freeze_lora", False):
logger.info("freeze lora")
freeze_module(self.lm)
self.lm.print_trainable_parameters()
else:
self.use_lora = False
def add_tokens(self):
num_new_tokens = len(special_tokens)
self.lm.resize_token_embeddings(len(self.tokenizer))
input_embeddings = self.lm.get_input_embeddings().weight.data
output_embeddings = self.lm.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
print(self.lm.get_input_embeddings().weight.data.shape)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0]
def build_loss(self):
self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False)
self.use_bbox_loss = self.model_config.loss.get("add_bbox_loss", False)
self.use_mask_loss = self.model_config.loss.get("use_mask_loss", False)
self.use_temporal_loss = self.model_config.loss.get('use_temporal_loss', False)
if self.use_vision_regression_loss:
self.image_loss_fct = MSELoss()
def load_pretrained_weights(self):
if self.model_config.pretrained_paths.get('pretrained_vit_qformer_path', None):
if 'safetensor' in self.model_config.pretrained_paths.pretrained_vit_qformer_path:
from safetensors import safe_open
from safetensors.torch import save_file
state_dict = {}
with safe_open(self.model_config.pretrained_paths.pretrained_vit_qformer_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
else:
state_dict = torch.load(self.model_config.pretrained_paths.pretrained_vit_qformer_path, map_location="cpu")
if "model" in state_dict.keys():
state_dict = state_dict["model"]
elif "module" in state_dict.keys():
state_dict = state_dict["module"] # for deepspeed
self.check_temp_emb(state_dict)
msg = self.load_state_dict(state_dict, strict=False)
print('Loading vit: ', msg)
logger.info(f"Load ViT and QFormer from {self.model_config.pretrained_paths.pretrained_vit_qformer_path}: {msg}")
if self.model_config.pretrained_paths.get('pretrained_videochat2', None):
state_dict = torch.load(self.model_config.pretrained_paths.pretrained_videochat2, map_location="cpu")
new_state_dict = {}
for k in state_dict.keys():
if 'bert.embeddings' not in k:
new_state_dict[k] = state_dict[k]
state_dict = new_state_dict
# self.check_temp_emb(state_dict)
msg = self.load_state_dict(state_dict, strict=False)
print('Loading videochat2: ', msg)
def check_temp_emb(self, state_dict):
old_num_frames = self.model_config.vision_encoder.get('origin_num_frames', None)
new_num_frames = self.model_config.vision_encoder.num_frames
if old_num_frames is not None and old_num_frames != new_num_frames:
logger.info(f"interpolate_pos_embed_internvideo2 to {new_num_frames} (origin_num_frames={old_num_frames})!!!")
a = len(state_dict)
interpolate_pos_embed_internvideo2_new(state_dict, self.vision_encoder, orig_t_size=4)
assert a == len(state_dict), state_dict.keys()
def build_bbox_decoder(self):
self.loc_encoder = nn.Sequential(
nn.Linear(4, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16),
nn.ReLU(),
nn.Linear(self.model_config.llm.hidden_size // 2, self.model_config.llm.hidden_size, dtype=torch.bfloat16),
)
self.loc_decoder = nn.Sequential(
nn.Linear(self.model_config.llm.hidden_size, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16),
nn.ReLU(),
nn.Linear(self.model_config.llm.hidden_size // 2, 4, dtype=torch.bfloat16)
)
self._initialize_bbox_weights()
def _initialize_bbox_weights(self):
return
def build_sam(self):
sam2_checkpoint = "/cpfs01/user/heyinan/checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=self.lm.device)
self.sam = predictor
freeze_module(self.sam)
@property
def dtype(self):
return self.lm.dtype
@property
def device(self):
return self.lm.device
|