File size: 17,178 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import io
import logging
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss
from transformers.modeling_outputs import (
    CausalLMOutputWithPast,
)
from typing import List, Optional, Tuple, Union
from transformers import LlamaForCausalLM

from torch.cuda.amp import autocast as autocast

from .modeling_vit import build_vit
from .modeling_qformer  import build_qformer
from .model_config import VideoChatEConfig
logger = logging.getLogger(__name__)

from transformers import LlamaTokenizer,AutoTokenizer,AutoModel,AutoModelForCausalLM,AutoProcessor
from transformers import AutoConfig, PreTrainedModel

import os
import sys


try:
    from third_party.sam2.build_sam import build_sam2_video_predictor
    from third_party.cgdetr.cg_detr.model import build_cgdetr_model
except:
    print("can not import sam2 and cg-detr, install them first.")

DEFAULT_IMG_TOKEN = "[IMG]"
DEFAULT_IMG_END_TOKEN = "[/IMG]"

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_VIDEO_TOKEN = "[VIDEO]"

IMG_TOKEN = "[<IMG_PLH>]"
VID_TOKEN = "[<VID_PLH>]"

BOX_START = '<box_begin>'
# BOX_END = '<box_end>'
ATBOXES_PLACEHOLDER = '<box_begin><boxes>'
# ATBOXES_PLACEHOLDER = '<box_begin>'
BOXES_PLACEHOLDER = '<boxes>'
EXPR_PLACEHOLDER = '<expr>'
QUESTION_PLACEHOLDER = '<question>'
TIME_START = '<time_begin>'
# TIME_END = '<time_end>'
TIME_PLACEHOLDER = '<temp>'
ATTEMP_PLACEHOLDER = TIME_START + TIME_PLACEHOLDER
# ATTEMP_PLACEHOLDER = TIME_START
TRACK_START='<track_begin>'
TRACK_PLACEHOLDER = '<tracking>'
TRACK_START_BOX = '<track_box>'
ATTRACK_PLACEHOLDER = TRACK_START + TRACK_PLACEHOLDER
need_template_list = ['REC', 'flickr', 'tracking', 'tracking2', 'tracking3', 'tracking4'] 

load_image_list = ['image', 'REC', 'flickr']
load_video_list = ['video', 'TVG', 'tracking', 'tracking2','tracking3', 'tracking4', 'TVG+HL']
special_tokens = [BOX_START, TIME_START, TIME_PLACEHOLDER, BOXES_PLACEHOLDER, TRACK_START, TRACK_PLACEHOLDER, TRACK_START_BOX]

def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


def freeze_module(module):
    for _, param in module.named_parameters():
        param.requires_grad = False
    module = module.eval()
    module.train = disabled_train
    return module


class LLMConfig(AutoConfig):
    model_type = "20b"


class BaseMLLM(PreTrainedModel):
    config_class = VideoChatEConfig
    def __init__(self, config,_tokenizer=None):
        # super().__init__(config)
        self.model_config = config.model_config
        self.tokenizer = _tokenizer
        
        config.cg_opt = None
        config.model_config = None
        config.model_tokenizer = None
        super().__init__(config)
        self.build_vision_encoder()
        self.build_llm()
        self.build_bridge()
        self.build_loss()
        
        self.load_pretrained_weights()
        try:
            if config.build_decoder:
                self.cg_opt = config.cg_opt
                self.build_bbox_decoder()
                self.build_sam()
                self.build_CGDETR()
        except:
            print("please install cgdetr and sam2 first")
        logger.info(f'Length of tokenizer and resize embedding: {len(self.tokenizer)}')

    
    def build_vision_encoder(self):
        if 'internvideo2' in self.model_config.vision_encoder.name.lower():
            encoder_name = self.model_config.vision_encoder.name
            logger.info(f"Build vision_encoder: {encoder_name}")
            if encoder_name == 'internvideo2-1B':
                self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config)

            else:
                raise ValueError(f"Not implemented: {encoder_name}")
        elif 'vit' in self.model_config.vision_encoder.name.lower():
            self.vision_encoder = build_vit(self.model_config)
        else:
            raise NotImplementedError(self.model_config.vision_encoder.name)

        if self.model_config.vision_encoder.vit_add_ln:
            self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12)
        else:
            self.vision_layernorm = nn.Identity()

        self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False)

        if self.freeze_vision_encoder:
            logger.info("freeze vision encoder")
            freeze_module(self.vision_encoder)
            freeze_module(self.vision_layernorm)

    def build_CGDETR(self):
        self.cg_model, self.cg_criterion = build_cgdetr_model()
    
    def build_bridge(self):
        # ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim
        self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed?
        # LM to ViT: 6656 -> 1792
        self.project_down = nn.Linear(self.lm.config.hidden_size, 768)
        
        if 'qformer' in self.model_config.bridge.name.lower():
            from transformers import BertTokenizer
            self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left")
            self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
            self.qformer_tokenizer.padding_side = "left"
            if self.model_config.bridge.name == 'qformer':
                self.qformer, self.query_tokens = build_qformer(
                        self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
                        qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
                        qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob,
                        qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate,
                )
            elif self.model_config.bridge.name == 'causal_qformer':
                self.qformer, self.query_tokens = build_causal_qformer(
                        self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
                        qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
                        qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob
                )
            self.qformer.resize_token_embeddings(len(self.qformer_tokenizer))
            self.qformer.cls = None
            self.extra_num_query_token = self.model_config.bridge.extra_num_query_token
            if self.model_config.bridge.extra_num_query_token > 0:
                logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer")
                self.extra_query_tokens = nn.Parameter(
                    torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1])
                )
            
            self.freeze_bridge = self.model_config.get("freeze_bridge", False)
            if self.freeze_bridge:
                logger.info("freeze bridge")
                freeze_module(self.qformer)
                self.query_tokens.requires_grad = False

    def build_llm(self):
        self.lm_name = self.model_config.llm.name
        if self.model_config.llm.name == "vicuna1.5_7b":
            self.lm = LlamaForCausalLM.from_pretrained(self.model_config.llm.pretrained_llm_path)
            self.lm.gradient_checkpointing = self.model_config.llm.get("use_llama_gradient_checkpointing", True)
        elif self.model_config.llm.name == 'mistral_7b':
            from transformers import AutoModelForCausalLM

            config = AutoConfig.from_pretrained(
                self.model_config.llm.pretrained_llm_path,
                torch_dtype=torch.bfloat16,
                # attn_implementation="flash_attention_2",
            )
            self.lm = AutoModelForCausalLM.from_config(config)
        elif self.model_config.llm.name == 'internlm_20b':
            from transformers import AutoModelForCausalLM
            self.lm = AutoModelForCausalLM.from_pretrained(
                self.model_config.llm.pretrained_llm_path,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
            )
            self.lm.gradient_checkpointing = True
            self.lm._set_gradient_checkpointing()
        else:
            raise NotImplementedError(self.model_config.llm.name)

        num_new_tokens = len(special_tokens)
        self.lm.resize_token_embeddings(len(self.tokenizer))

        input_embeddings = self.lm.get_input_embeddings().weight.data
        output_embeddings = self.lm.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg

        self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0]
        self.freeze_llm = self.model_config.get("freeze_llm", True)
        logger.info(f'freeze_llm: {self.freeze_llm}')
        if self.freeze_llm:
            logger.info("freeze llm")
            freeze_module(self.lm)
    
        if self.model_config.llm.use_lora:
            self.use_lora = True
            from peft import get_peft_model, LoraConfig, TaskType
            logger.info("Use lora")
            if self.model_config.llm.name == 'internlm_20b':
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM, inference_mode=False, 
                    r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
                    target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output']
                )
            else:
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM, inference_mode=False, 
                    r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
                    target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
                                    "gate_proj", "up_proj", "down_proj", "lm_head"]
                )
                
            self.lm = get_peft_model(self.lm, peft_config)
            self.lm.enable_input_require_grads()
            self.lm.print_trainable_parameters()

            if self.model_config.get("freeze_lora", False):
                logger.info("freeze lora")
                freeze_module(self.lm)
                self.lm.print_trainable_parameters()

        else:
            self.use_lora = False

    def add_lora(self):
        if self.model_config.llm.use_lora:
            self.use_lora = True
            from peft import get_peft_model, LoraConfig, TaskType
            logger.info("Use lora")
            if self.model_config.llm.name == 'internlm_20b':
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM, inference_mode=False, 
                    r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
                    target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output']
                )
            else:
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM, inference_mode=False, 
                    r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
                    target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
                                    "gate_proj", "up_proj", "down_proj", "lm_head"]
                )
                
            self.lm = get_peft_model(self.lm, peft_config)
            self.lm.enable_input_require_grads()
            self.lm.print_trainable_parameters()

            if self.model_config.get("freeze_lora", False):
                logger.info("freeze lora")
                freeze_module(self.lm)
                self.lm.print_trainable_parameters()

        else:
            self.use_lora = False

    def add_tokens(self):
        num_new_tokens = len(special_tokens)
        self.lm.resize_token_embeddings(len(self.tokenizer))

        input_embeddings = self.lm.get_input_embeddings().weight.data
        output_embeddings = self.lm.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)
        print(self.lm.get_input_embeddings().weight.data.shape)
        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg

        self.model_config.token_at_ids = self.tokenizer.convert_tokens_to_ids([BOX_START])[0]

    def build_loss(self):
        self.use_vision_regression_loss = self.model_config.loss.get("use_vision_regression_loss", False)
        self.use_bbox_loss = self.model_config.loss.get("add_bbox_loss", False)
        self.use_mask_loss = self.model_config.loss.get("use_mask_loss", False)
        self.use_temporal_loss = self.model_config.loss.get('use_temporal_loss', False)
        if self.use_vision_regression_loss:
            self.image_loss_fct = MSELoss()
        
        
    def load_pretrained_weights(self):
        if self.model_config.pretrained_paths.get('pretrained_vit_qformer_path', None):
            if 'safetensor' in self.model_config.pretrained_paths.pretrained_vit_qformer_path:
                from safetensors import safe_open
                from safetensors.torch import save_file
                state_dict = {}
                with safe_open(self.model_config.pretrained_paths.pretrained_vit_qformer_path, framework="pt", device="cpu") as f:
                    for key in f.keys():
                        state_dict[key] = f.get_tensor(key)
            else:
                state_dict = torch.load(self.model_config.pretrained_paths.pretrained_vit_qformer_path, map_location="cpu")
                if "model" in state_dict.keys():
                    state_dict = state_dict["model"]
                elif "module" in state_dict.keys(): 
                    state_dict = state_dict["module"] # for deepspeed
            self.check_temp_emb(state_dict)
            msg = self.load_state_dict(state_dict, strict=False)
            print('Loading vit: ', msg)
            logger.info(f"Load ViT and QFormer from {self.model_config.pretrained_paths.pretrained_vit_qformer_path}: {msg}")

        if self.model_config.pretrained_paths.get('pretrained_videochat2', None):
            state_dict = torch.load(self.model_config.pretrained_paths.pretrained_videochat2, map_location="cpu")
            
            new_state_dict = {}
            for k in state_dict.keys():
                if 'bert.embeddings' not in k:
                    new_state_dict[k] = state_dict[k]
            state_dict = new_state_dict
            # self.check_temp_emb(state_dict)
            msg = self.load_state_dict(state_dict, strict=False)
            print('Loading videochat2: ', msg)
        

    def check_temp_emb(self, state_dict):
        old_num_frames = self.model_config.vision_encoder.get('origin_num_frames', None)
        new_num_frames = self.model_config.vision_encoder.num_frames
        if old_num_frames is not None and old_num_frames != new_num_frames:
            logger.info(f"interpolate_pos_embed_internvideo2 to {new_num_frames} (origin_num_frames={old_num_frames})!!!")
            a = len(state_dict)
            interpolate_pos_embed_internvideo2_new(state_dict, self.vision_encoder, orig_t_size=4)
            assert a == len(state_dict), state_dict.keys()

    def build_bbox_decoder(self):
        self.loc_encoder = nn.Sequential(
            nn.Linear(4, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16),
            nn.ReLU(),
            nn.Linear(self.model_config.llm.hidden_size // 2, self.model_config.llm.hidden_size, dtype=torch.bfloat16),
        )

        self.loc_decoder = nn.Sequential(
            nn.Linear(self.model_config.llm.hidden_size, self.model_config.llm.hidden_size // 2, dtype=torch.bfloat16),
            nn.ReLU(),
            nn.Linear(self.model_config.llm.hidden_size // 2, 4, dtype=torch.bfloat16)
        )
        self._initialize_bbox_weights()

    def _initialize_bbox_weights(self):
        return

    def build_sam(self):
        sam2_checkpoint = "/cpfs01/user/heyinan/checkpoints/sam2_hiera_large.pt"
        model_cfg = "sam2_hiera_l.yaml"
        predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=self.lm.device)
        
        self.sam = predictor
        freeze_module(self.sam)
        

    @property
    def dtype(self):
        return self.lm.dtype


    @property
    def device(self):
        return self.lm.device