File size: 23,555 Bytes
87b74fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import List, Optional, Tuple, Union
import torch.utils.checkpoint
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .configuration_pvc_internvl import PVCInternVLConfig
from .conversation import get_conv_template
from .modeling_intern_vit import InternVisionModel, has_flash_attn
from .modeling_intern_vit_pvc import InternVisionTemporalModel, AdaLayerNorm, Timesteps, temporal_idx_abs_to_rel
from .modeling_internlm2 import InternLM2ForCausalLM
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
class AdaLNMLP(nn.Module):
def __init__(self, input_dim, output_dim, use_temporal_condition=False,
use_rel_timestep=False, rel_timestep_scale=100):
super().__init__()
# condition proj
self.condition_proj = nn.Sequential(
nn.Linear(input_dim, input_dim),
nn.SiLU(), # default use `SiLU`
nn.Linear(input_dim, input_dim)
)
self.use_temporal_condition = use_temporal_condition
self.use_rel_timestep = use_rel_timestep
self.rel_timestep_scale = rel_timestep_scale
# from Stable Diffusion v3
if use_temporal_condition:
self.time_embed = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.time_proj = nn.Sequential(
nn.Linear(256, input_dim),
nn.SiLU(),
nn.Linear(input_dim, input_dim)
)
# adaln
self.adaln = AdaLayerNorm(input_dim, input_dim)
# original mlp
self.mlp = nn.Sequential(
nn.Linear(input_dim, output_dim),
nn.GELU(),
nn.Linear(output_dim, output_dim)
)
self.gradient_checkpointing = False
def forward(self, x, split_sizes, temporal_id=None):
condition = self.condition_proj(x)
# from Stable Diffusion v3
if self.use_temporal_condition:
t = temporal_id
if self.use_rel_timestep:
t = temporal_idx_abs_to_rel(temporal_id, split_sizes)
t = t * self.rel_timestep_scale
t_embed = self.time_embed(t)
t_embed = self.time_proj(t_embed.to(x.dtype))
condition = condition + t_embed.unsqueeze(1)
x = self.adaln(x, condition)
x = self.mlp(x)
return x
def build_projector_module(config: PVCInternVLConfig):
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
if config.mlp_add_ops is not None and 'adaln' in config.mlp_add_ops:
mlp_input_dim = vit_hidden_size * int(1 / config.downsample_ratio) ** 2
use_temporal_condition = ('temporal' in config.mlp_add_ops)
use_rel_timestep = ('rel' in config.mlp_add_ops)
mlp1 = AdaLNMLP(mlp_input_dim, llm_hidden_size,
use_temporal_condition=use_temporal_condition,
use_rel_timestep=use_rel_timestep)
else:
mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / config.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / config.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
return mlp1
def forward_projector(projector, x, **kwargs):
if isinstance(projector, nn.Sequential):
return projector(x)
else:
return projector(x, **kwargs)
class PVCInternVLModel(PreTrainedModel):
config_class = PVCInternVLConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_supports_flash_attn_2 = True
_no_split_modules = ['InternVisionModel', 'InternVisionTemporalModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
def __init__(self, config: PVCInternVLConfig, vision_model=None, language_model=None, delay_init_new_param=False, use_flash_attn=True):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.num_frame_token = self.num_image_token
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
use_flash_attn = use_flash_attn if has_flash_attn else False
config.vision_config.use_flash_attn = True if use_flash_attn else False
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'num_frame_token: {self.num_frame_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
if config.use_temporal:
self.vision_model = InternVisionTemporalModel(config.vision_config, delay_init_new_param=delay_init_new_param)
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
self.language_model = InternLM2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
self.mlp1 = build_projector_module(config)
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
split_sizes: Optional[torch.LongTensor] = None,
temporal_id: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
vit_embeds = self.extract_feature(pixel_values, split_sizes=split_sizes, temporal_id=temporal_id)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values, split_sizes=None, temporal_id=None):
kwargs = {}
# add split_sizes for temporal module
if self.config.use_temporal:
if split_sizes is not None:
if isinstance(split_sizes, torch.Tensor):
split_sizes = split_sizes.tolist()
else:
split_sizes = [pixel_values.shape[0]]
assert sum(split_sizes) == pixel_values.shape[0]
kwargs['split_sizes'] = split_sizes
kwargs['temporal_id'] = temporal_id
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True,
**kwargs
).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True,
**kwargs
).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = forward_projector(self.mlp1, vit_embeds, split_sizes=split_sizes, temporal_id=temporal_id)
return vit_embeds
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, split_sizes=None, data_flag=None,
num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
template = get_conv_template(self.template)
template.system_message = self.system_message
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
split_sizes=split_sizes,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep)[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, num_patches_list=None,
split_sizes=None, data_flag=None, history=None, return_history=False,
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False):
# data flag: 0: pure text; 1: single image; 2: multi image; 3 video
flag = data_flag[0].item() if data_flag is not None else 1 # default as single image
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
# default as `tile id`: [0, 1, ..., n_tile]
temporal_id = torch.arange(len(pixel_values), dtype=torch.long, device=pixel_values.device)
if self.config.tile_repeat_way == 'cycle':
new_temporal_id = []
for tid, n_tile in enumerate(num_patches_list):
new_temporal_id.append(torch.tensor([tid] * n_tile, dtype=torch.long, device=pixel_values.device))
temporal_id = torch.cat(new_temporal_id)
if (flag == 1 or flag == 2) and self.config.image_repeat_time > 1:
if self.config.tile_repeat_way == 'cycle':
cur_st = 0
new_pixel_values, new_temporal_id = [], []
for img_idx, n_tile in enumerate(num_patches_list):
image = pixel_values[cur_st:cur_st+n_tile]
new_pixel_values.append(torch.cat([image for _ in range(self.config.image_repeat_time)], dim=0))
new_temporal_id.append(torch.arange(img_idx * self.config.image_repeat_time, (img_idx + 1) * self.config.image_repeat_time,
dtype=torch.long, device=temporal_id.device).repeat_interleave(n_tile, dim=0))
cur_st += n_tile
new_pixel_values = torch.cat(new_pixel_values, dim=0)
new_temporal_id = torch.cat(new_temporal_id, dim=0)
assert cur_st == len(pixel_values)
assert len(new_pixel_values) == len(new_temporal_id) == len(pixel_values) * self.config.image_repeat_time
pixel_values, temporal_id = new_pixel_values, new_temporal_id
else:
pixel_values = pixel_values.repeat_interleave(self.config.image_repeat_time, dim=0)
temporal_id = torch.arange(len(pixel_values), dtype=torch.long, device=pixel_values.device)
split_sizes = [s * self.config.image_repeat_time for s in split_sizes] if split_sizes is not None else None
num_patches_list = [n * self.config.image_repeat_time for n in num_patches_list] if num_patches_list is not None else None
if flag == 3 and self.config.video_repeat_time > 1:
pixel_values = pixel_values.repeat_interleave(self.config.video_repeat_time, dim=0)
if self.config.tile_repeat_way == 'cycle':
new_temporal_id = []
for img_idx, n_tile in enumerate(num_patches_list):
new_temporal_id.append(torch.arange(img_idx * self.config.video_repeat_time, (img_idx + 1) * self.config.video_repeat_time,
dtype=torch.long, device=temporal_id.device).repeat_interleave(n_tile, dim=0))
temporal_id = torch.cat(new_temporal_id, dim=0)
else:
temporal_id = torch.arange(len(pixel_values), dtype=torch.long, device=pixel_values.device)
split_sizes = [s * self.config.video_repeat_time for s in split_sizes] if split_sizes is not None else None
num_patches_list = [n * self.config.video_repeat_time for n in num_patches_list] if num_patches_list is not None else None
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
for num_patches in num_patches_list:
if flag == 0:
num_image_token = 0
elif (flag == 1 or flag == 2):
num_image_token = self.num_image_token * num_patches
else:
num_image_token = self.num_frame_token * num_patches
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * num_image_token + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
split_sizes=split_sizes,
temporal_id=temporal_id,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep.strip())[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
split_sizes: Optional[torch.LongTensor] = None,
temporal_id: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values, split_sizes=split_sizes, temporal_id=temporal_id)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs
|