|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
class InternVisionPatchConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to |
|
instantiate a vision encoder according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of color channels in the input images (e.g., 3 for RGB). |
|
patch_size (`int`, *optional*, defaults to 14): |
|
The size (resolution) of each patch. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
qkv_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to add a bias to the queries and values in the self-attention layers. |
|
hidden_size (`int`, *optional*, defaults to 3200): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_attention_heads (`int`, *optional*, defaults to 25): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 12800): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
qk_normalization (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the queries and keys in the self-attention layers. |
|
num_hidden_layers (`int`, *optional*, defaults to 48): |
|
Number of hidden layers in the Transformer encoder. |
|
use_flash_attn (`bool`, *optional*, defaults to `True`): |
|
Whether to use flash attention mechanism. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
The epsilon used by the layer normalization layers. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
drop_path_rate (`float`, *optional*, defaults to 0.0): |
|
Dropout rate for stochastic depth. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 0.1): |
|
A factor for layer scale. |
|
""" |
|
|
|
model_type = 'intern_vit_patch' |
|
|
|
def __init__( |
|
self, |
|
patch_size=14, |
|
image_size=224, |
|
hidden_size=3200, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if 'vision_config' in config_dict: |
|
config_dict = config_dict['vision_config'] |
|
|
|
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' |
|
) |
|
|
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|