|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import List, Optional, Tuple, Union, Callable |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
LlamaTokenizer) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
from .conversation import get_conv_template |
|
from .modeling_intern_vit import InternVisionModel, has_flash_attn |
|
from .modeling_internlm2 import InternLM2ForCausalLM |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def bipartite_soft_matching( |
|
metric: torch.Tensor, |
|
r: int, |
|
) -> Tuple[Callable, Callable]: |
|
""" |
|
Applies ToMe with a balanced matching set (50%, 50%). |
|
|
|
Input size is [batch, tokens, channels]. |
|
r indicates the number of tokens to remove (max 50% of tokens). |
|
""" |
|
protected = 0 |
|
|
|
t = metric.shape[1] |
|
r = min(r, (t - protected) // 2) |
|
|
|
assert r > 0, r |
|
|
|
with torch.no_grad(): |
|
metric = metric / metric.norm(dim=-1, keepdim=True) |
|
a, b = metric[..., ::2, :], metric[..., 1::2, :] |
|
scores = a @ b.transpose(-1, -2) |
|
|
|
node_max, node_idx = scores.max(dim=-1) |
|
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] |
|
|
|
unm_idx = edge_idx[..., r:, :] |
|
src_idx = edge_idx[..., :r, :] |
|
dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx) |
|
|
|
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: |
|
src, dst = x[..., ::2, :], x[..., 1::2, :] |
|
n, t1, c = src.shape |
|
unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c)) |
|
src = src.gather(dim=-2, index=src_idx.expand(n, r, c)) |
|
dst = dst.scatter_add(-2, dst_idx.expand(n, r, c), src) |
|
|
|
return torch.cat([unm, dst], dim=1) |
|
|
|
def unmerge(x: torch.Tensor) -> torch.Tensor: |
|
unm_len = unm_idx.shape[1] |
|
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] |
|
n, _, c = unm.shape |
|
|
|
src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c)) |
|
|
|
out = torch.zeros(n, metric.shape[1], c, device=x.device, dtype=x.dtype) |
|
|
|
out[..., 1::2, :] = dst |
|
out.scatter_(dim=-2, index=(2 * unm_idx).expand(n, unm_len, c), src=unm) |
|
out.scatter_(dim=-2, index=(2 * src_idx).expand(n, r, c), src=src) |
|
|
|
return out |
|
|
|
return merge, unmerge |
|
|
|
|
|
def merge_wavg( |
|
merge: Callable, x: torch.Tensor, size: torch.Tensor = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Applies the merge function by taking a weighted average based on token size. |
|
Returns the merged tensor and the new token sizes. |
|
""" |
|
if size is None: |
|
size = torch.ones_like(x[..., 0, None]) |
|
|
|
x = merge(x * size, mode="sum") |
|
size = merge(size, mode="sum") |
|
|
|
x = x / size |
|
return x, size |
|
|
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
import operator |
|
|
|
from packaging import version |
|
op_func = getattr(operator, op) |
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
config_class = InternVLChatConfig |
|
main_input_name = 'pixel_values' |
|
base_model_prefix = 'language_model' |
|
_supports_flash_attn_2 = True |
|
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer'] |
|
|
|
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): |
|
super().__init__(config) |
|
|
|
assert version_cmp(transformers.__version__, '4.36.2', 'ge') |
|
image_size = config.force_image_size or config.vision_config.image_size |
|
patch_size = config.vision_config.patch_size |
|
self.local_num_frames = 4 |
|
self.num_tome_tokens = 64 |
|
self.config = config |
|
self.patch_size = patch_size |
|
self.select_layer = config.select_layer |
|
self.template = config.template |
|
|
|
self.num_image_token = self.num_tome_tokens // self.local_num_frames |
|
self.downsample_ratio = config.downsample_ratio |
|
self.ps_version = config.ps_version |
|
use_flash_attn = use_flash_attn if has_flash_attn else False |
|
config.vision_config.use_flash_attn = True if use_flash_attn else False |
|
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' |
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
logger.info(f'ps_version: {self.ps_version}') |
|
if vision_model is not None: |
|
self.vision_model = vision_model |
|
else: |
|
self.vision_model = InternVisionModel(config.vision_config) |
|
if language_model is not None: |
|
self.language_model = language_model |
|
else: |
|
if config.llm_config.architectures[0] == 'LlamaForCausalLM': |
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': |
|
self.language_model = InternLM2ForCausalLM(config.llm_config) |
|
else: |
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') |
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
self.mlp1 = nn.Sequential( |
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), |
|
nn.GELU(), |
|
nn.Linear(llm_hidden_size, llm_hidden_size) |
|
) |
|
|
|
self.img_context_token_id = None |
|
self.conv_template = get_conv_template(self.template) |
|
self.system_message = self.conv_template.system_message |
|
|
|
def merge_tokens(self, x, target_num_token): |
|
r""" |
|
x = torch.randn(10, 2560, c) |
|
x = merge_tokens(x, r_merge_list=[1280]) |
|
""" |
|
size = None |
|
b, p, c = x.shape |
|
tmp_p = p |
|
r_merge_list = [] |
|
assert tmp_p > target_num_token, f"{tmp_p} should greater than {target_num_token}" |
|
while tmp_p != target_num_token: |
|
if tmp_p - target_num_token <= (tmp_p // 2): |
|
r_merge_list.append(tmp_p - target_num_token) |
|
break |
|
else: |
|
r_merge_list.append(tmp_p // 2) |
|
tmp_p = tmp_p - (tmp_p // 2) |
|
|
|
|
|
head = self.config.llm_config.num_attention_heads |
|
|
|
dim = c // head |
|
for r in r_merge_list: |
|
metric = x.reshape(b, p, head, dim).mean(2) |
|
merge, _ = bipartite_soft_matching( |
|
metric, |
|
r |
|
) |
|
x, size = merge_wavg(merge, x, size) |
|
_, p, _ = x.shape |
|
|
|
return x |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
image_flags: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
image_flags = image_flags.squeeze(-1) |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() |
|
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
vit_embeds = vit_embeds[image_flags == 1] |
|
vit_batch_size = pixel_values.shape[0] |
|
|
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
try: |
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
except Exception as e: |
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' |
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
n_token = selected.sum() |
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
outputs = self.language_model( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
n, w, h, c = x.size() |
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
if self.ps_version == 'v1': |
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
'which results in a transposed image.') |
|
else: |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
return x |
|
|
|
def extract_feature(self, pixel_values): |
|
if self.select_layer == -1: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=False, |
|
return_dict=True).last_hidden_state |
|
else: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=True, |
|
return_dict=True).hidden_states[self.select_layer] |
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0] // self.local_num_frames, -1, vit_embeds.shape[-1]) |
|
vit_embeds = self.merge_tokens(vit_embeds, self.num_tome_tokens) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0] * self.local_num_frames, -1, vit_embeds.shape[-1]) |
|
vit_embeds = self.mlp1(vit_embeds) |
|
return vit_embeds |
|
|
|
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, |
|
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', |
|
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None): |
|
if history is not None or return_history: |
|
print('Now multi-turn chat is not supported in batch_chat.') |
|
raise NotImplementedError |
|
|
|
if image_counts is not None: |
|
num_patches_list = image_counts |
|
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
queries = [] |
|
for idx, num_patches in enumerate(num_patches_list): |
|
question = questions[idx] |
|
if pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
queries.append(query) |
|
|
|
tokenizer.padding_side = 'left' |
|
model_inputs = tokenizer(queries, return_tensors='pt', padding=True) |
|
input_ids = model_inputs['input_ids'].to(self.device) |
|
attention_mask = model_inputs['attention_mask'].to(self.device) |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) |
|
responses = [response.split(template.sep.strip())[0].strip() for response in responses] |
|
return responses |
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
verbose=False): |
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
|
|
if num_patches_list is None: |
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) |
|
|
|
history = [] if history is None else history |
|
for (old_question, old_answer) in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
for num_patches in num_patches_list: |
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
input_ids = model_inputs['input_ids'].to(self.device) |
|
attention_mask = model_inputs['attention_mask'].to(self.device) |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
response = response.split(template.sep.strip())[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
if verbose: |
|
print(query_to_print, response) |
|
return response |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
visual_features: Optional[torch.FloatTensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
|
|
assert self.img_context_token_id is not None |
|
if pixel_values is not None: |
|
if visual_features is not None: |
|
vit_embeds = visual_features |
|
else: |
|
vit_embeds = self.extract_feature(pixel_values) |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
assert selected.sum() != 0 |
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
else: |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
outputs = self.language_model.generate( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=True, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|