Weiyun1025 commited on
Commit
8e4360b
·
verified ·
1 Parent(s): 29e10c5

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +704 -0
  3. added_tokens.json +33 -0
  4. config.json +220 -0
  5. configuration_intern_vit.py +120 -0
  6. configuration_internvl_chat.py +97 -0
  7. conversation.py +391 -0
  8. examples/image1.jpg +0 -0
  9. examples/image2.jpg +3 -0
  10. examples/red-panda.mp4 +3 -0
  11. generation_config.json +4 -0
  12. merges.txt +0 -0
  13. model-00001-of-00033.safetensors +3 -0
  14. model-00002-of-00033.safetensors +3 -0
  15. model-00003-of-00033.safetensors +3 -0
  16. model-00004-of-00033.safetensors +3 -0
  17. model-00005-of-00033.safetensors +3 -0
  18. model-00006-of-00033.safetensors +3 -0
  19. model-00007-of-00033.safetensors +3 -0
  20. model-00008-of-00033.safetensors +3 -0
  21. model-00009-of-00033.safetensors +3 -0
  22. model-00010-of-00033.safetensors +3 -0
  23. model-00011-of-00033.safetensors +3 -0
  24. model-00012-of-00033.safetensors +3 -0
  25. model-00013-of-00033.safetensors +3 -0
  26. model-00014-of-00033.safetensors +3 -0
  27. model-00015-of-00033.safetensors +3 -0
  28. model-00016-of-00033.safetensors +3 -0
  29. model-00017-of-00033.safetensors +3 -0
  30. model-00018-of-00033.safetensors +3 -0
  31. model-00019-of-00033.safetensors +3 -0
  32. model-00020-of-00033.safetensors +3 -0
  33. model-00021-of-00033.safetensors +3 -0
  34. model-00022-of-00033.safetensors +3 -0
  35. model-00023-of-00033.safetensors +3 -0
  36. model-00024-of-00033.safetensors +3 -0
  37. model-00025-of-00033.safetensors +3 -0
  38. model-00026-of-00033.safetensors +3 -0
  39. model-00027-of-00033.safetensors +3 -0
  40. model-00028-of-00033.safetensors +3 -0
  41. model-00029-of-00033.safetensors +3 -0
  42. model-00030-of-00033.safetensors +3 -0
  43. model-00031-of-00033.safetensors +3 -0
  44. model-00032-of-00033.safetensors +3 -0
  45. model-00033-of-00033.safetensors +3 -0
  46. model.safetensors.index.json +0 -0
  47. modeling_intern_vit.py +431 -0
  48. modeling_internvl_chat.py +359 -0
  49. preprocessor_config.json +19 -0
  50. special_tokens_map.json +31 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
37
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: qwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
5
+ pipeline_tag: image-text-to-text
6
+ library_name: transformers
7
+ base_model:
8
+ - OpenGVLab/InternViT-6B-448px-V2_5
9
+ - Qwen/Qwen2.5-72B
10
+ base_model_relation: merge
11
+ language:
12
+ - multilingual
13
+ tags:
14
+ - internvl
15
+ - custom_code
16
+ ---
17
+
18
+ # InternVL3-78B-Pretrained
19
+
20
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479)
21
+
22
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
23
+
24
+ <div align="center">
25
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
26
+ </div>
27
+
28
+ ## Introduction
29
+
30
+ ***This is the pretrained version of InternVL3-78B, which has undergone native multimodal pre-trainin but has not undergone post-training (i.e., SFT and MPO). If you're unsure which version to use, please use the [InternVL3-78B](https://huggingface.co/OpenGVLab/InternVL3-78B) version.***
31
+
32
+ We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
33
+ Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
34
+ Additionally, we compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3. Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
35
+
36
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/overall.png)
37
+
38
+ ## InternVL3 Family
39
+
40
+ In the following table, we provide an overview of the InternVL3 series.
41
+
42
+ | Model Name | Vision Part | Language Part | HF Link |
43
+ | :-----------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :------------------------------------------------------: |
44
+ | InternVL3-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-1B) |
45
+ | InternVL3-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-2B) |
46
+ | InternVL3-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-8B) |
47
+ | InternVL3-9B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm3-8b-instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-9B) |
48
+ | InternVL3-14B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-14B) |
49
+ | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
50
+ | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
51
+
52
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/overall-table.png)
53
+
54
+ ## Model Architecture
55
+
56
+ As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
57
+
58
+
59
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
60
+
61
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
62
+
63
+ Notably, in InternVL3, we integrate the [Variable Visual Position Encoding (V2PE)](https://arxiv.org/abs/2412.09616), which utilizes smaller, more flexible position increments for visual tokens. Benefiting from V2PE, InternVL3 exhibits better long context understanding capabilities compared to its predecessors.
64
+
65
+ ## Training Strategy
66
+
67
+ ### Native Multimodal Pre-Training
68
+
69
+ We propose a [Native Multimodal Pre-Training](https://huggingface.co/papers/2504.10479) approach that consolidates language and vision learning into a single pre-training stage.
70
+ In contrast to standard paradigms that first train a language-only model and subsequently adapt it to handle additional modalities, our method interleaves multimodal data (e.g., image-text, video-text, or image-text interleaved sequences) with large-scale textual corpora. This unified training scheme allows the model to learn both linguistic and multimodal representations simultaneously, ultimately enhancing its capability to handle vision-language tasks without the need for separate alignment or bridging modules.
71
+ Please see [our paper](https://huggingface.co/papers/2504.10479) for more details.
72
+
73
+ ### Supervised Fine-Tuning
74
+
75
+ In this phase, the techniques of random JPEG compression, square loss re-weighting, and multimodal data packing proposed in [InternVL2.5](https://arxiv.org/abs/2412.05271) are also employed in the InternVL3 series.
76
+ The main advancement of the SFT phase in InternVL3 compared to InternVL2.5 lies in the use of higher-quality and more diverse training data.
77
+ Specifically, we further extend training samples for tool use, 3D scene understanding, GUI operations, long context tasks, video understanding, scientific diagrams, creative writing, and multimodal reasoning.
78
+
79
+ ### Mixed Preference Optimization
80
+
81
+ During Pre-training and SFT, the model is trained to predict the next token conditioned on previous ground-truth tokens.
82
+ However, during inference, the model predicts each token based on its own prior outputs.
83
+ This discrepancy between ground-truth tokens and model-predicted tokens introduces a distribution shift, which can impair the model’s Chain-of-Thought (CoT) reasoning capabilities.
84
+ To mitigate this issue, we employ [MPO](https://arxiv.org/abs/2411.10442), which introduces additional supervision from both positive and negative samples to align the model response distribution with the ground-truth distribution, thereby improving reasoning performance.
85
+ Specifically, the training objective of MPO is a combination of
86
+ preference loss \\(\mathcal{L}_{\text{p}}\\),
87
+ quality loss \\(\mathcal{L}_{\text{q}}\\),
88
+ and generation loss \\(\mathcal{L}_{\text{g}}\\),
89
+ which can be formulated as follows:
90
+
91
+
92
+ $$
93
+ \mathcal{L}=w_{p}\cdot\mathcal{L}_{\text{p}} + w_{q}\cdot\mathcal{L}_{\text{q}} + w_{g}\cdot\mathcal{L}_{\text{g}},
94
+ $$
95
+
96
+
97
+ where \\(w_{*}\\) represents the weight assigned to each loss component. Please see [our paper](https://arxiv.org/abs/2411.10442) for more details about MPO.
98
+
99
+
100
+ ### Test-Time Scaling
101
+
102
+ Test-Time Scaling has been shown to be an effective method to enhance the reasoning abilities of LLMs and MLLMs.
103
+ In this work, we use the Best-of-N evaluation strategy and employ [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B) as the critic model to select the best response for reasoning and mathematics evaluation.
104
+
105
+ ## Evaluation on Multimodal Capability
106
+
107
+ ### Multimodal Reasoning and Mathematics
108
+
109
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/reasoning.png)
110
+
111
+ ### OCR, Chart, and Document Understanding
112
+
113
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ocr.png)
114
+
115
+ ### Multi-Image & Real-World Comprehension
116
+
117
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/multi-images.png)
118
+
119
+ ### Comprehensive Multimodal & Hallucination Evaluation
120
+
121
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/comprehensive.png)
122
+
123
+ ### Visual Grounding
124
+
125
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/grounding.png)
126
+
127
+ ### Multimodal Multilingual Understanding
128
+
129
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/multilingual.png)
130
+
131
+ ### Video Understanding
132
+
133
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/video.png)
134
+
135
+ ### GUI Grounding
136
+
137
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/gui.png)
138
+
139
+ ### Spatial Reasoning
140
+
141
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/vsi.png)
142
+
143
+ ## Evaluation on Language Capability
144
+
145
+ We compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3.
146
+ Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
147
+ Please note that the evaluation scores of Qwen2.5 series may differ from those officially reported, as we have adopted the prompt versions provided in the table across all datasets for OpenCompass evaluation.
148
+
149
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/text.png)
150
+
151
+ ## Ablation Study
152
+
153
+ ### Native Multimodal Pre-Training
154
+
155
+ We conduct experiments on the InternVL2-8B model while keeping its architecture, initialization parameters, and training data entirely unchanged. Traditionally, InternVL2-8B employs a training pipeline that begins with an MLP warmup phase for feature alignment followed by an Instruction Tuning stage. In our experiments, we substitute the conventional MLP warmup phase with a native multimodal pre-training process. This modification isolates the contribution of native multimodal pre-training to the overall multimodal capability of the model.
156
+
157
+ The evaluation results in the Figure below shows that the model with native multimodal pre-training exhibits performance on most benchmarks that is comparable to the fully multi-stage-trained InternVL2-8B baseline. Furthermore, when followed by instruction tuning on higher-quality data, the model demonstrates further performance gains across evaluated multimodal tasks. These findings underscore the efficiency of native multimodal pre-training in imparting powerful multimodal capabilities to MLLMs.
158
+
159
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-native.png)
160
+
161
+ ### Mixed Preference Optimization
162
+
163
+ As shown in the table below, models fine-tuned with MPO demonstrate superior reasoning performance across seven multimodal reasoning benchmarks compared to their counterparts without MPO. Specifically, InternVL3-78B and InternVL3-38B outperform their counterparts by 4.1 and 4.5 points, respectively. Notably, the training data used for MPO is a subset of that used for SFT, indicating that the performance improvements primarily stem from the training algorithm rather than the training data.
164
+
165
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-mpo.png)
166
+
167
+ ### Variable Visual Position Encoding
168
+
169
+ As reported in the table below, the introduction of V2PE leads to significant performance gains across most evaluation metrics. In addition, our ablation studies—by varying the positional increment \\( \delta \\)—reveal that even for tasks primarily involving conventional contexts, relatively small \\( \delta \\) values can achieve optimal performance. These findings provide important insights for future efforts aimed at refining position encoding strategies for visual tokens in MLLMs.
170
+
171
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-v2pe.png)
172
+
173
+ ## Quick Start
174
+
175
+ We provide an example code to run `InternVL3-78B` using `transformers`.
176
+
177
+ > Please use transformers>=4.37.2 to ensure the model works normally.
178
+
179
+ ### Model Loading
180
+
181
+ #### 16-bit (bf16 / fp16)
182
+
183
+ ```python
184
+ import torch
185
+ from transformers import AutoTokenizer, AutoModel
186
+ path = "OpenGVLab/InternVL3-78B"
187
+ model = AutoModel.from_pretrained(
188
+ path,
189
+ torch_dtype=torch.bfloat16,
190
+ low_cpu_mem_usage=True,
191
+ use_flash_attn=True,
192
+ trust_remote_code=True).eval().cuda()
193
+ ```
194
+
195
+ #### BNB 8-bit Quantization
196
+
197
+ ```python
198
+ import torch
199
+ from transformers import AutoTokenizer, AutoModel
200
+ path = "OpenGVLab/InternVL3-78B"
201
+ model = AutoModel.from_pretrained(
202
+ path,
203
+ torch_dtype=torch.bfloat16,
204
+ load_in_8bit=True,
205
+ low_cpu_mem_usage=True,
206
+ use_flash_attn=True,
207
+ trust_remote_code=True).eval()
208
+ ```
209
+
210
+ #### Multiple GPUs
211
+
212
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
213
+
214
+ ```python
215
+ import math
216
+ import torch
217
+ from transformers import AutoTokenizer, AutoModel
218
+
219
+ def split_model(model_name):
220
+ device_map = {}
221
+ world_size = torch.cuda.device_count()
222
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
223
+ num_layers = config.llm_config.num_hidden_layers
224
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
225
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
226
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
227
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
228
+ layer_cnt = 0
229
+ for i, num_layer in enumerate(num_layers_per_gpu):
230
+ for j in range(num_layer):
231
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
232
+ layer_cnt += 1
233
+ device_map['vision_model'] = 0
234
+ device_map['mlp1'] = 0
235
+ device_map['language_model.model.tok_embeddings'] = 0
236
+ device_map['language_model.model.embed_tokens'] = 0
237
+ device_map['language_model.output'] = 0
238
+ device_map['language_model.model.norm'] = 0
239
+ device_map['language_model.model.rotary_emb'] = 0
240
+ device_map['language_model.lm_head'] = 0
241
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
242
+
243
+ return device_map
244
+
245
+ path = "OpenGVLab/InternVL3-78B"
246
+ device_map = split_model('InternVL3-78B')
247
+ model = AutoModel.from_pretrained(
248
+ path,
249
+ torch_dtype=torch.bfloat16,
250
+ low_cpu_mem_usage=True,
251
+ use_flash_attn=True,
252
+ trust_remote_code=True,
253
+ device_map=device_map).eval()
254
+ ```
255
+
256
+ ### Inference with Transformers
257
+
258
+ ```python
259
+ import math
260
+ import numpy as np
261
+ import torch
262
+ import torchvision.transforms as T
263
+ from decord import VideoReader, cpu
264
+ from PIL import Image
265
+ from torchvision.transforms.functional import InterpolationMode
266
+ from transformers import AutoModel, AutoTokenizer
267
+
268
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
269
+ IMAGENET_STD = (0.229, 0.224, 0.225)
270
+
271
+ def build_transform(input_size):
272
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
273
+ transform = T.Compose([
274
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
275
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
276
+ T.ToTensor(),
277
+ T.Normalize(mean=MEAN, std=STD)
278
+ ])
279
+ return transform
280
+
281
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
282
+ best_ratio_diff = float('inf')
283
+ best_ratio = (1, 1)
284
+ area = width * height
285
+ for ratio in target_ratios:
286
+ target_aspect_ratio = ratio[0] / ratio[1]
287
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
288
+ if ratio_diff < best_ratio_diff:
289
+ best_ratio_diff = ratio_diff
290
+ best_ratio = ratio
291
+ elif ratio_diff == best_ratio_diff:
292
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
293
+ best_ratio = ratio
294
+ return best_ratio
295
+
296
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
297
+ orig_width, orig_height = image.size
298
+ aspect_ratio = orig_width / orig_height
299
+
300
+ # calculate the existing image aspect ratio
301
+ target_ratios = set(
302
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
303
+ i * j <= max_num and i * j >= min_num)
304
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
305
+
306
+ # find the closest aspect ratio to the target
307
+ target_aspect_ratio = find_closest_aspect_ratio(
308
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
309
+
310
+ # calculate the target width and height
311
+ target_width = image_size * target_aspect_ratio[0]
312
+ target_height = image_size * target_aspect_ratio[1]
313
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
314
+
315
+ # resize the image
316
+ resized_img = image.resize((target_width, target_height))
317
+ processed_images = []
318
+ for i in range(blocks):
319
+ box = (
320
+ (i % (target_width // image_size)) * image_size,
321
+ (i // (target_width // image_size)) * image_size,
322
+ ((i % (target_width // image_size)) + 1) * image_size,
323
+ ((i // (target_width // image_size)) + 1) * image_size
324
+ )
325
+ # split the image
326
+ split_img = resized_img.crop(box)
327
+ processed_images.append(split_img)
328
+ assert len(processed_images) == blocks
329
+ if use_thumbnail and len(processed_images) != 1:
330
+ thumbnail_img = image.resize((image_size, image_size))
331
+ processed_images.append(thumbnail_img)
332
+ return processed_images
333
+
334
+ def load_image(image_file, input_size=448, max_num=12):
335
+ image = Image.open(image_file).convert('RGB')
336
+ transform = build_transform(input_size=input_size)
337
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
338
+ pixel_values = [transform(image) for image in images]
339
+ pixel_values = torch.stack(pixel_values)
340
+ return pixel_values
341
+
342
+ def split_model(model_name):
343
+ device_map = {}
344
+ world_size = torch.cuda.device_count()
345
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
346
+ num_layers = config.llm_config.num_hidden_layers
347
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
348
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
349
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
350
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
351
+ layer_cnt = 0
352
+ for i, num_layer in enumerate(num_layers_per_gpu):
353
+ for j in range(num_layer):
354
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
355
+ layer_cnt += 1
356
+ device_map['vision_model'] = 0
357
+ device_map['mlp1'] = 0
358
+ device_map['language_model.model.tok_embeddings'] = 0
359
+ device_map['language_model.model.embed_tokens'] = 0
360
+ device_map['language_model.output'] = 0
361
+ device_map['language_model.model.norm'] = 0
362
+ device_map['language_model.model.rotary_emb'] = 0
363
+ device_map['language_model.lm_head'] = 0
364
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
365
+
366
+ return device_map
367
+
368
+ # If you set `load_in_8bit=True`, you will need two 80GB GPUs.
369
+ # If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
370
+ path = 'OpenGVLab/InternVL3-78B'
371
+ device_map = split_model('InternVL3-78B')
372
+ model = AutoModel.from_pretrained(
373
+ path,
374
+ torch_dtype=torch.bfloat16,
375
+ load_in_8bit=False,
376
+ low_cpu_mem_usage=True,
377
+ use_flash_attn=True,
378
+ trust_remote_code=True,
379
+ device_map=device_map).eval()
380
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
381
+
382
+ # set the max number of tiles in `max_num`
383
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
384
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
385
+
386
+ # pure-text conversation (纯文本对话)
387
+ question = 'Hello, who are you?'
388
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
389
+ print(f'User: {question}\nAssistant: {response}')
390
+
391
+ question = 'Can you tell me a story?'
392
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
393
+ print(f'User: {question}\nAssistant: {response}')
394
+
395
+ # single-image single-round conversation (单图单轮对话)
396
+ question = '<image>\nPlease describe the image shortly.'
397
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
398
+ print(f'User: {question}\nAssistant: {response}')
399
+
400
+ # single-image multi-round conversation (单图多轮对话)
401
+ question = '<image>\nPlease describe the image in detail.'
402
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
403
+ print(f'User: {question}\nAssistant: {response}')
404
+
405
+ question = 'Please write a poem according to the image.'
406
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
407
+ print(f'User: {question}\nAssistant: {response}')
408
+
409
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
410
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
411
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
412
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
413
+
414
+ question = '<image>\nDescribe the two images in detail.'
415
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
416
+ history=None, return_history=True)
417
+ print(f'User: {question}\nAssistant: {response}')
418
+
419
+ question = 'What are the similarities and differences between these two images.'
420
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
421
+ history=history, return_history=True)
422
+ print(f'User: {question}\nAssistant: {response}')
423
+
424
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
425
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
426
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
427
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
428
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
429
+
430
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
431
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
432
+ num_patches_list=num_patches_list,
433
+ history=None, return_history=True)
434
+ print(f'User: {question}\nAssistant: {response}')
435
+
436
+ question = 'What are the similarities and differences between these two images.'
437
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
438
+ num_patches_list=num_patches_list,
439
+ history=history, return_history=True)
440
+ print(f'User: {question}\nAssistant: {response}')
441
+
442
+ # batch inference, single image per sample (单图批处理)
443
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
444
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
445
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
446
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
447
+
448
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
449
+ responses = model.batch_chat(tokenizer, pixel_values,
450
+ num_patches_list=num_patches_list,
451
+ questions=questions,
452
+ generation_config=generation_config)
453
+ for question, response in zip(questions, responses):
454
+ print(f'User: {question}\nAssistant: {response}')
455
+
456
+ # video multi-round conversation (视频多轮对话)
457
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
458
+ if bound:
459
+ start, end = bound[0], bound[1]
460
+ else:
461
+ start, end = -100000, 100000
462
+ start_idx = max(first_idx, round(start * fps))
463
+ end_idx = min(round(end * fps), max_frame)
464
+ seg_size = float(end_idx - start_idx) / num_segments
465
+ frame_indices = np.array([
466
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
467
+ for idx in range(num_segments)
468
+ ])
469
+ return frame_indices
470
+
471
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
472
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
473
+ max_frame = len(vr) - 1
474
+ fps = float(vr.get_avg_fps())
475
+
476
+ pixel_values_list, num_patches_list = [], []
477
+ transform = build_transform(input_size=input_size)
478
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
479
+ for frame_index in frame_indices:
480
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
481
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
482
+ pixel_values = [transform(tile) for tile in img]
483
+ pixel_values = torch.stack(pixel_values)
484
+ num_patches_list.append(pixel_values.shape[0])
485
+ pixel_values_list.append(pixel_values)
486
+ pixel_values = torch.cat(pixel_values_list)
487
+ return pixel_values, num_patches_list
488
+
489
+ video_path = './examples/red-panda.mp4'
490
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
491
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
492
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
493
+ question = video_prefix + 'What is the red panda doing?'
494
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
495
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
496
+ num_patches_list=num_patches_list, history=None, return_history=True)
497
+ print(f'User: {question}\nAssistant: {response}')
498
+
499
+ question = 'Describe this video in detail.'
500
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
501
+ num_patches_list=num_patches_list, history=history, return_history=True)
502
+ print(f'User: {question}\nAssistant: {response}')
503
+ ```
504
+
505
+ #### Streaming Output
506
+
507
+ Besides this method, you can also use the following code to get streamed output.
508
+
509
+ ```python
510
+ from transformers import TextIteratorStreamer
511
+ from threading import Thread
512
+
513
+ # Initialize the streamer
514
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
515
+ # Define the generation configuration
516
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
517
+ # Start the model chat in a separate thread
518
+ thread = Thread(target=model.chat, kwargs=dict(
519
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
520
+ history=None, return_history=False, generation_config=generation_config,
521
+ ))
522
+ thread.start()
523
+
524
+ # Initialize an empty string to store the generated text
525
+ generated_text = ''
526
+ # Loop through the streamer to get the new text as it is generated
527
+ for new_text in streamer:
528
+ if new_text == model.conv_template.sep:
529
+ break
530
+ generated_text += new_text
531
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
532
+ ```
533
+
534
+ ## Finetune
535
+
536
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
537
+
538
+ ## Deployment
539
+
540
+ ### LMDeploy
541
+
542
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
543
+
544
+ ```sh
545
+ # if lmdeploy<0.7.3, you need to explicitly set chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
546
+ pip install lmdeploy>=0.7.3
547
+ ```
548
+
549
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
550
+
551
+ #### A 'Hello, world' Example
552
+
553
+ ```python
554
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
555
+ from lmdeploy.vl import load_image
556
+
557
+ model = 'OpenGVLab/InternVL3-78B'
558
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
559
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=4), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
560
+ response = pipe(('describe this image', image))
561
+ print(response.text)
562
+ ```
563
+
564
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
565
+
566
+ #### Multi-images Inference
567
+
568
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
569
+
570
+ ```python
571
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
572
+ from lmdeploy.vl import load_image
573
+ from lmdeploy.vl.constants import IMAGE_TOKEN
574
+
575
+ model = 'OpenGVLab/InternVL3-78B'
576
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=4), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
577
+
578
+ image_urls=[
579
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
580
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
581
+ ]
582
+
583
+ images = [load_image(img_url) for img_url in image_urls]
584
+ # Numbering images improves multi-image conversations
585
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
586
+ print(response.text)
587
+ ```
588
+
589
+ #### Batch Prompts Inference
590
+
591
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
592
+
593
+ ```python
594
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
595
+ from lmdeploy.vl import load_image
596
+
597
+ model = 'OpenGVLab/InternVL3-78B'
598
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=4), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
599
+
600
+ image_urls=[
601
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
602
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
603
+ ]
604
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
605
+ response = pipe(prompts)
606
+ print(response)
607
+ ```
608
+
609
+ #### Multi-turn Conversation
610
+
611
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
612
+
613
+ ```python
614
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
615
+ from lmdeploy.vl import load_image
616
+
617
+ model = 'OpenGVLab/InternVL3-78B'
618
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=4), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
619
+
620
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
621
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
622
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
623
+ print(sess.response.text)
624
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
625
+ print(sess.response.text)
626
+ ```
627
+
628
+ #### Service
629
+
630
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
631
+
632
+ ```shell
633
+ lmdeploy serve api_server OpenGVLab/InternVL3-78B --chat-template internvl2_5 --server-port 23333 --tp 4
634
+ ```
635
+
636
+ To use the OpenAI-style interface, you need to install OpenAI:
637
+
638
+ ```shell
639
+ pip install openai
640
+ ```
641
+
642
+ Then, use the code below to make the API call:
643
+
644
+ ```python
645
+ from openai import OpenAI
646
+
647
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
648
+ model_name = client.models.list().data[0].id
649
+ response = client.chat.completions.create(
650
+ model=model_name,
651
+ messages=[{
652
+ 'role':
653
+ 'user',
654
+ 'content': [{
655
+ 'type': 'text',
656
+ 'text': 'describe this image',
657
+ }, {
658
+ 'type': 'image_url',
659
+ 'image_url': {
660
+ 'url':
661
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
662
+ },
663
+ }],
664
+ }],
665
+ temperature=0.8,
666
+ top_p=0.8)
667
+ print(response)
668
+ ```
669
+
670
+ ## License
671
+
672
+ This project is released under the MIT License. This project uses the pre-trained Qwen2.5 as a component, which is licensed under the Qwen License.
673
+
674
+ ## Citation
675
+
676
+ If you find this project useful in your research, please consider citing:
677
+
678
+ ```BibTeX
679
+ @article{chen2024expanding,
680
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
681
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
682
+ journal={arXiv preprint arXiv:2412.05271},
683
+ year={2024}
684
+ }
685
+ @article{wang2024mpo,
686
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
687
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
688
+ journal={arXiv preprint arXiv:2411.10442},
689
+ year={2024}
690
+ }
691
+ @article{chen2024far,
692
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
693
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
694
+ journal={arXiv preprint arXiv:2404.16821},
695
+ year={2024}
696
+ }
697
+ @inproceedings{chen2024internvl,
698
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
699
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
700
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
701
+ pages={24185--24198},
702
+ year={2024}
703
+ }
704
+ ```
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<quad>": 151668,
11
+ "<ref>": 151670,
12
+ "<tool_call>": 151657,
13
+ "<|box_end|>": 151649,
14
+ "<|box_start|>": 151648,
15
+ "<|endoftext|>": 151643,
16
+ "<|file_sep|>": 151664,
17
+ "<|fim_middle|>": 151660,
18
+ "<|fim_pad|>": 151662,
19
+ "<|fim_prefix|>": 151659,
20
+ "<|fim_suffix|>": 151661,
21
+ "<|im_end|>": 151645,
22
+ "<|im_start|>": 151644,
23
+ "<|image_pad|>": 151655,
24
+ "<|object_ref_end|>": 151647,
25
+ "<|object_ref_start|>": 151646,
26
+ "<|quad_end|>": 151651,
27
+ "<|quad_start|>": 151650,
28
+ "<|repo_name|>": 151663,
29
+ "<|video_pad|>": 151656,
30
+ "<|vision_end|>": 151653,
31
+ "<|vision_pad|>": 151654,
32
+ "<|vision_start|>": 151652
33
+ }
config.json ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/petrelfs/share_data/wangweiyun/share_internvl_preview/InternVL3-78B-Pretrain",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "image_fold": null,
16
+ "llm_config": {
17
+ "_name_or_path": "./pretrained/Qwen2.5-32B-Instruct",
18
+ "add_cross_attention": false,
19
+ "architectures": [
20
+ "Qwen2ForCausalLM"
21
+ ],
22
+ "attention_dropout": 0.0,
23
+ "bad_words_ids": null,
24
+ "begin_suppress_tokens": null,
25
+ "bos_token_id": 151643,
26
+ "chunk_size_feed_forward": 0,
27
+ "cross_attention_hidden_size": null,
28
+ "decoder_start_token_id": null,
29
+ "diversity_penalty": 0.0,
30
+ "do_sample": false,
31
+ "early_stopping": false,
32
+ "encoder_no_repeat_ngram_size": 0,
33
+ "eos_token_id": 151643,
34
+ "exponential_decay_length_penalty": null,
35
+ "finetuning_task": null,
36
+ "forced_bos_token_id": null,
37
+ "forced_eos_token_id": null,
38
+ "hidden_act": "silu",
39
+ "hidden_size": 8192,
40
+ "id2label": {
41
+ "0": "LABEL_0",
42
+ "1": "LABEL_1"
43
+ },
44
+ "initializer_range": 0.02,
45
+ "intermediate_size": 29568,
46
+ "is_decoder": false,
47
+ "is_encoder_decoder": false,
48
+ "label2id": {
49
+ "LABEL_0": 0,
50
+ "LABEL_1": 1
51
+ },
52
+ "length_penalty": 1.0,
53
+ "max_length": 20,
54
+ "max_position_embeddings": 32768,
55
+ "max_window_layers": 70,
56
+ "min_length": 0,
57
+ "model_type": "qwen2",
58
+ "moe_config": null,
59
+ "no_repeat_ngram_size": 0,
60
+ "num_attention_heads": 64,
61
+ "num_beam_groups": 1,
62
+ "num_beams": 1,
63
+ "num_hidden_layers": 80,
64
+ "num_key_value_heads": 8,
65
+ "num_return_sequences": 1,
66
+ "output_attentions": false,
67
+ "output_hidden_states": false,
68
+ "output_scores": false,
69
+ "pad_token_id": null,
70
+ "prefix": null,
71
+ "problem_type": null,
72
+ "pruned_heads": {},
73
+ "remove_invalid_values": false,
74
+ "repetition_penalty": 1.0,
75
+ "return_dict": true,
76
+ "return_dict_in_generate": false,
77
+ "rms_norm_eps": 1e-06,
78
+ "rope_scaling": {
79
+ "factor": 2.0,
80
+ "rope_type": "dynamic",
81
+ "type": "dynamic"
82
+ },
83
+ "rope_theta": 1000000.0,
84
+ "sep_token_id": null,
85
+ "sliding_window": null,
86
+ "suppress_tokens": null,
87
+ "task_specific_params": null,
88
+ "temperature": 1.0,
89
+ "tf_legacy_loss": false,
90
+ "tie_encoder_decoder": false,
91
+ "tie_word_embeddings": false,
92
+ "tokenizer_class": null,
93
+ "top_k": 50,
94
+ "top_p": 1.0,
95
+ "torch_dtype": "bfloat16",
96
+ "torchscript": false,
97
+ "transformers_version": "4.45.1",
98
+ "typical_p": 1.0,
99
+ "use_bfloat16": true,
100
+ "use_cache": true,
101
+ "use_sliding_window": false,
102
+ "vocab_size": 151674
103
+ },
104
+ "max_dynamic_patch": 12,
105
+ "min_dynamic_patch": 1,
106
+ "model_type": "internvl_chat",
107
+ "pad2square": false,
108
+ "ps_version": "v2",
109
+ "select_layer": -1,
110
+ "template": "internvl2_5",
111
+ "tie_word_embeddings": false,
112
+ "torch_dtype": "bfloat16",
113
+ "transformers_version": null,
114
+ "use_backbone_lora": 0,
115
+ "use_llm_lora": 0,
116
+ "use_thumbnail": true,
117
+ "vision_config": {
118
+ "_name_or_path": "OpenGVLab/InternViT-6B-448px-V1-5",
119
+ "add_cross_attention": false,
120
+ "architectures": [
121
+ "InternVisionModel"
122
+ ],
123
+ "attention_dropout": 0.0,
124
+ "auto_map": {
125
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
126
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
127
+ },
128
+ "bad_words_ids": null,
129
+ "begin_suppress_tokens": null,
130
+ "bos_token_id": null,
131
+ "capacity_factor": 1.2,
132
+ "chunk_size_feed_forward": 0,
133
+ "cross_attention_hidden_size": null,
134
+ "decoder_start_token_id": null,
135
+ "diversity_penalty": 0.0,
136
+ "do_sample": false,
137
+ "drop_path_rate": 0.4,
138
+ "dropout": 0.0,
139
+ "early_stopping": false,
140
+ "encoder_no_repeat_ngram_size": 0,
141
+ "eos_token_id": null,
142
+ "eval_capacity_factor": 1.4,
143
+ "exponential_decay_length_penalty": null,
144
+ "finetuning_task": null,
145
+ "forced_bos_token_id": null,
146
+ "forced_eos_token_id": null,
147
+ "hidden_act": "gelu",
148
+ "hidden_size": 3200,
149
+ "id2label": {
150
+ "0": "LABEL_0",
151
+ "1": "LABEL_1"
152
+ },
153
+ "image_size": 448,
154
+ "initializer_factor": 0.1,
155
+ "initializer_range": 1e-10,
156
+ "intermediate_size": 12800,
157
+ "is_decoder": false,
158
+ "is_encoder_decoder": false,
159
+ "label2id": {
160
+ "LABEL_0": 0,
161
+ "LABEL_1": 1
162
+ },
163
+ "laux_allreduce": "all_nodes",
164
+ "layer_norm_eps": 1e-06,
165
+ "length_penalty": 1.0,
166
+ "max_length": 20,
167
+ "min_length": 0,
168
+ "model_type": "intern_vit_6b",
169
+ "moe_coeff_ratio": 0.5,
170
+ "moe_intermediate_size": 3200,
171
+ "moe_output_scale": 4.0,
172
+ "no_repeat_ngram_size": 0,
173
+ "noisy_gate_policy": "RSample_before",
174
+ "norm_type": "rms_norm",
175
+ "num_attention_heads": 25,
176
+ "num_beam_groups": 1,
177
+ "num_beams": 1,
178
+ "num_channels": 3,
179
+ "num_experts": 8,
180
+ "num_hidden_layers": 45,
181
+ "num_return_sequences": 1,
182
+ "num_routed_experts": 4,
183
+ "num_shared_experts": 4,
184
+ "output_attentions": false,
185
+ "output_hidden_states": false,
186
+ "output_scores": false,
187
+ "pad_token_id": null,
188
+ "patch_size": 14,
189
+ "prefix": null,
190
+ "problem_type": null,
191
+ "pruned_heads": {},
192
+ "qk_normalization": true,
193
+ "qkv_bias": false,
194
+ "remove_invalid_values": false,
195
+ "repetition_penalty": 1.0,
196
+ "return_dict": true,
197
+ "return_dict_in_generate": false,
198
+ "sep_token_id": null,
199
+ "shared_expert_intermediate_size": 12800,
200
+ "suppress_tokens": null,
201
+ "task_specific_params": null,
202
+ "temperature": 1.0,
203
+ "tf_legacy_loss": false,
204
+ "tie_encoder_decoder": false,
205
+ "tie_word_embeddings": true,
206
+ "tokenizer_class": null,
207
+ "top_k": 50,
208
+ "top_p": 1.0,
209
+ "torch_dtype": "bfloat16",
210
+ "torchscript": false,
211
+ "transformers_version": "4.45.1",
212
+ "typical_p": 1.0,
213
+ "use_bfloat16": true,
214
+ "use_flash_attn": true,
215
+ "use_moe": false,
216
+ "use_residual": true,
217
+ "use_rts": false,
218
+ "use_weighted_residual": false
219
+ }
220
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+ # By default, we use tie_word_embeddings=False for models of all sizes.
67
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
68
+
69
+ logger.info(f'vision_select_layer: {self.select_layer}')
70
+ logger.info(f'ps_version: {self.ps_version}')
71
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
+
74
+ def to_dict(self):
75
+ """
76
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
+
78
+ Returns:
79
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
+ """
81
+ output = copy.deepcopy(self.__dict__)
82
+ output['vision_config'] = self.vision_config.to_dict()
83
+ output['llm_config'] = self.llm_config.to_dict()
84
+ output['model_type'] = self.__class__.model_type
85
+ output['use_backbone_lora'] = self.use_backbone_lora
86
+ output['use_llm_lora'] = self.use_llm_lora
87
+ output['select_layer'] = self.select_layer
88
+ output['force_image_size'] = self.force_image_size
89
+ output['downsample_ratio'] = self.downsample_ratio
90
+ output['template'] = self.template
91
+ output['dynamic_image_size'] = self.dynamic_image_size
92
+ output['use_thumbnail'] = self.use_thumbnail
93
+ output['ps_version'] = self.ps_version
94
+ output['min_dynamic_patch'] = self.min_dynamic_patch
95
+ output['max_dynamic_patch'] = self.max_dynamic_patch
96
+
97
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
examples/image1.jpg ADDED
examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.45.1"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3588beb93b288a842ae42e2d333bf17df1ec5cf3a699ead60e86cfcf499621a
3
+ size 4988569440
model-00002-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89ae6848b7fd1e354eea5a5e13280a8cd109304c40d0cd3f5910612170da4a90
3
+ size 4937253584
model-00003-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e41913c0da99db97e8874351101f5b047f119752a042359543a4b3af69953e1
3
+ size 4903161648
model-00004-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86a61ab49d2e6326eacfb40a8992a65a6510b1ddfd2ec1cf26905dd8db2da539
3
+ size 4781670848
model-00005-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dd900701a45d745bd5c60fbee7cc103c4e6b3857baf20364789fa1698fd0eab
3
+ size 4781670848
model-00006-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e50fbde8e720e146f6675bc2f4ada6776ed6d0857f4162f221dc591d491aba
3
+ size 4964101824
model-00007-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7882d618bb95adeea8033f5d3bcb724615a9fc3b0aabcef140fe7070a9459e30
3
+ size 4781637840
model-00008-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edea52d5db21a84be961d70c2d9bc1f8e4102054771334189fbf464d461c3fef
3
+ size 4781670880
model-00009-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2bc286163127edbb3c84bd6d468ef804aba398ba29f9da584502183aaa0a37b
3
+ size 4781670880
model-00010-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad837ba2b9000e58a95aaeea0ecf79c7f0231dd2fad018bd88cf2b1a0523f5c0
3
+ size 4964101848
model-00011-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daeb6cb5bae6dd28d5c30cfa79afefd0957d97d4b5237c317310155c9f9ca835
3
+ size 4781637856
model-00012-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b060c987f9e8c2c8a56ad525010f2673b421ac69a0d6c10e422941a552c72b0
3
+ size 4781670880
model-00013-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34196b7ceb6f25bc55f45850a8d95aac746f485e8b33051e6cedd873289c17dc
3
+ size 4781670880
model-00014-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baedfdb1cf2bdddb6cf1a3c6793eec38849b6dae39956bfbb3341490d7f40b1b
3
+ size 4964101848
model-00015-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49d4857d4ab77f355e697a9cb7d3a2e847e94a258c3712c546c4c23afa82325b
3
+ size 4781637856
model-00016-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a7234d383590ea476babb1374bf44cb1a74d64a64842f46aa76f73ccb2e54f
3
+ size 4781670880
model-00017-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d89ae96586729a1e4dd42a4c0dd845e00c7e65055a0784a61c066ddcb0b9934c
3
+ size 4781670880
model-00018-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63cf7c6ced049964113f029ecec4b451fe58858c3dc3b5a75b149e160790fa0c
3
+ size 4964101848
model-00019-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53595a8a0432e233898441d5cd1db0bc23be7dc3e8206206199cab9d579f185d
3
+ size 4781637856
model-00020-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65dc699b75afa61ec801976d48dbbf8c5bc28d7cfd51dc30c2c70507b0e15a75
3
+ size 4781670880
model-00021-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e7b55f41b7dcf0a3bdbeba1196ff49fe01a9722b1fa869c0546b17f154f1fed
3
+ size 4781670880
model-00022-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60f66a24cac9449110b9706dfc851a5509544f2e01890c3a6ffd1a7f2fb4dc1f
3
+ size 4964101848
model-00023-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75fd8c63a0a4f05fffb3c07b02b6634a94c0e85099cf01b57c0036f85cfc4086
3
+ size 4781637856
model-00024-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3adfaf60acd5b8025c97a05c2d22fc9a4d96099bc4e602c348524608b37812ad
3
+ size 4781670880
model-00025-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14686c6c44b69af2d2c9f41cc05b6c2a84a15c75d6b19037063b59e6f8576a9f
3
+ size 4781670880
model-00026-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25c4874b4404eec7f3b72f0e32e91cbfde8fc8912f38509da260327db8d52929
3
+ size 4964101848
model-00027-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca15252f8285d4d231a61adaceb9df6a9b9345309bb442d3951f452ba02f9d56
3
+ size 4781637856
model-00028-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ea3d07aa76267a2b953f6f0c033b4e6692dfb4f685e468427952812dae9f986
3
+ size 4781670880
model-00029-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e34958d4e03aa67cc1c326bdc30a7683ce202aa0f3ce1bdac90c3a6d5ca693dc
3
+ size 4781670880
model-00030-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9a72a28be0d12a2a718fe70cfcc60325219b26c99da8815afca66870c2844a3
3
+ size 4964101848
model-00031-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6440f01e1ec57ca47a69a79b2973e39b584011ec64db08ff8d5e558b73997a62
3
+ size 4781637856
model-00032-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eda9f0883249d8e6ac89596670c3813e5e7623026680e97f6cb5ad856f07f06f
3
+ size 3995233856
model-00033-of-00033.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d72f7504b23152817cee3ae255f373fb6b91431718a0d2d47a61515eecd303d
3
+ size 2829044384
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_intern_vit.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ supports_gradient_checkpointing = True
368
+ config_class = InternVisionConfig
369
+ _no_split_modules = ['InternVisionEncoderLayer']
370
+
371
+ def __init__(self, config: InternVisionConfig):
372
+ super().__init__(config)
373
+ self.config = config
374
+
375
+ self.embeddings = InternVisionEmbeddings(config)
376
+ self.encoder = InternVisionEncoder(config)
377
+
378
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
379
+ pos_emb = self.embeddings.position_embedding
380
+ _, num_positions, embed_dim = pos_emb.shape
381
+ cls_emb = pos_emb[:, :1, :]
382
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
383
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
384
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
385
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
386
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
387
+ self.embeddings.image_size = new_size
388
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
389
+
390
+ def get_input_embeddings(self):
391
+ return self.embeddings
392
+
393
+ def forward(
394
+ self,
395
+ pixel_values: Optional[torch.FloatTensor] = None,
396
+ output_hidden_states: Optional[bool] = None,
397
+ return_dict: Optional[bool] = None,
398
+ pixel_embeds: Optional[torch.FloatTensor] = None,
399
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
400
+ output_hidden_states = (
401
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
402
+ )
403
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
404
+
405
+ if pixel_values is None and pixel_embeds is None:
406
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
407
+
408
+ if pixel_embeds is not None:
409
+ hidden_states = pixel_embeds
410
+ else:
411
+ if len(pixel_values.shape) == 4:
412
+ hidden_states = self.embeddings(pixel_values)
413
+ else:
414
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
415
+ encoder_outputs = self.encoder(
416
+ inputs_embeds=hidden_states,
417
+ output_hidden_states=output_hidden_states,
418
+ return_dict=return_dict,
419
+ )
420
+ last_hidden_state = encoder_outputs.last_hidden_state
421
+ pooled_output = last_hidden_state[:, 0, :]
422
+
423
+ if not return_dict:
424
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
425
+
426
+ return BaseModelOutputWithPooling(
427
+ last_hidden_state=last_hidden_state,
428
+ pooler_output=pooled_output,
429
+ hidden_states=encoder_outputs.hidden_states,
430
+ attentions=encoder_outputs.attentions,
431
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ Qwen2ForCausalLM)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ def version_cmp(v1, v2, op='eq'):
28
+ import operator
29
+
30
+ from packaging import version
31
+ op_func = getattr(operator, op)
32
+ return op_func(version.parse(v1), version.parse(v2))
33
+
34
+
35
+ class InternVLChatModel(PreTrainedModel):
36
+ config_class = InternVLChatConfig
37
+ main_input_name = 'pixel_values'
38
+ base_model_prefix = 'language_model'
39
+ _supports_flash_attn_2 = True
40
+ supports_gradient_checkpointing = True
41
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
42
+
43
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
+ super().__init__(config)
45
+
46
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
47
+ image_size = config.force_image_size or config.vision_config.image_size
48
+ patch_size = config.vision_config.patch_size
49
+ self.patch_size = patch_size
50
+ self.select_layer = config.select_layer
51
+ self.template = config.template
52
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
+ self.downsample_ratio = config.downsample_ratio
54
+ self.ps_version = config.ps_version
55
+ use_flash_attn = use_flash_attn if has_flash_attn else False
56
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
57
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
58
+
59
+ logger.info(f'num_image_token: {self.num_image_token}')
60
+ logger.info(f'ps_version: {self.ps_version}')
61
+ if vision_model is not None:
62
+ self.vision_model = vision_model
63
+ else:
64
+ self.vision_model = InternVisionModel(config.vision_config)
65
+ if language_model is not None:
66
+ self.language_model = language_model
67
+ else:
68
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
69
+ self.language_model = LlamaForCausalLM(config.llm_config)
70
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
71
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
72
+ else:
73
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
74
+
75
+ vit_hidden_size = config.vision_config.hidden_size
76
+ llm_hidden_size = config.llm_config.hidden_size
77
+
78
+ self.mlp1 = nn.Sequential(
79
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
80
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
81
+ nn.GELU(),
82
+ nn.Linear(llm_hidden_size, llm_hidden_size)
83
+ )
84
+
85
+ self.img_context_token_id = None
86
+ self.conv_template = get_conv_template(self.template)
87
+ self.system_message = self.conv_template.system_message
88
+
89
+ def forward(
90
+ self,
91
+ pixel_values: torch.FloatTensor,
92
+ input_ids: torch.LongTensor = None,
93
+ attention_mask: Optional[torch.Tensor] = None,
94
+ position_ids: Optional[torch.LongTensor] = None,
95
+ image_flags: Optional[torch.LongTensor] = None,
96
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
97
+ labels: Optional[torch.LongTensor] = None,
98
+ use_cache: Optional[bool] = None,
99
+ output_attentions: Optional[bool] = None,
100
+ output_hidden_states: Optional[bool] = None,
101
+ return_dict: Optional[bool] = None,
102
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
104
+
105
+ image_flags = image_flags.squeeze(-1)
106
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
107
+
108
+ vit_embeds = self.extract_feature(pixel_values)
109
+ vit_embeds = vit_embeds[image_flags == 1]
110
+ vit_batch_size = pixel_values.shape[0]
111
+
112
+ B, N, C = input_embeds.shape
113
+ input_embeds = input_embeds.reshape(B * N, C)
114
+
115
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
116
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
117
+
118
+ input_ids = input_ids.reshape(B * N)
119
+ selected = (input_ids == self.img_context_token_id)
120
+ try:
121
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
+ except Exception as e:
123
+ vit_embeds = vit_embeds.reshape(-1, C)
124
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
+ f'vit_embeds.shape={vit_embeds.shape}')
126
+ n_token = min(selected.sum(), vit_embeds.size(0))
127
+ input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
128
+
129
+ input_embeds = input_embeds.reshape(B, N, C)
130
+
131
+ outputs = self.language_model(
132
+ inputs_embeds=input_embeds,
133
+ attention_mask=attention_mask,
134
+ position_ids=position_ids,
135
+ past_key_values=past_key_values,
136
+ use_cache=use_cache,
137
+ output_attentions=output_attentions,
138
+ output_hidden_states=output_hidden_states,
139
+ return_dict=return_dict,
140
+ )
141
+ logits = outputs.logits
142
+
143
+ loss = None
144
+ if labels is not None:
145
+ # Shift so that tokens < n predict n
146
+ shift_logits = logits[..., :-1, :].contiguous()
147
+ shift_labels = labels[..., 1:].contiguous()
148
+ # Flatten the tokens
149
+ loss_fct = CrossEntropyLoss()
150
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
+ shift_labels = shift_labels.view(-1)
152
+ # Enable model parallelism
153
+ shift_labels = shift_labels.to(shift_logits.device)
154
+ loss = loss_fct(shift_logits, shift_labels)
155
+
156
+ if not return_dict:
157
+ output = (logits,) + outputs[1:]
158
+ return (loss,) + output if loss is not None else output
159
+
160
+ return CausalLMOutputWithPast(
161
+ loss=loss,
162
+ logits=logits,
163
+ past_key_values=outputs.past_key_values,
164
+ hidden_states=outputs.hidden_states,
165
+ attentions=outputs.attentions,
166
+ )
167
+
168
+ def pixel_shuffle(self, x, scale_factor=0.5):
169
+ n, w, h, c = x.size()
170
+ # N, W, H, C --> N, W, H * scale, C // scale
171
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
+ x = x.permute(0, 2, 1, 3).contiguous()
174
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
+ int(c / (scale_factor * scale_factor)))
177
+ if self.ps_version == 'v1':
178
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
+ 'which results in a transposed image.')
180
+ else:
181
+ x = x.permute(0, 2, 1, 3).contiguous()
182
+ return x
183
+
184
+ def extract_feature(self, pixel_values):
185
+ if self.select_layer == -1:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=False,
189
+ return_dict=True).last_hidden_state
190
+ else:
191
+ vit_embeds = self.vision_model(
192
+ pixel_values=pixel_values,
193
+ output_hidden_states=True,
194
+ return_dict=True).hidden_states[self.select_layer]
195
+ vit_embeds = vit_embeds[:, 1:, :]
196
+
197
+ h = w = int(vit_embeds.shape[1] ** 0.5)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
+ vit_embeds = self.mlp1(vit_embeds)
202
+ return vit_embeds
203
+
204
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
+ if history is not None or return_history:
208
+ print('Now multi-turn chat is not supported in batch_chat.')
209
+ raise NotImplementedError
210
+
211
+ if image_counts is not None:
212
+ num_patches_list = image_counts
213
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
+
215
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
+ self.img_context_token_id = img_context_token_id
217
+
218
+ if verbose and pixel_values is not None:
219
+ image_bs = pixel_values.shape[0]
220
+ print(f'dynamic ViT batch size: {image_bs}')
221
+
222
+ queries = []
223
+ for idx, num_patches in enumerate(num_patches_list):
224
+ question = questions[idx]
225
+ if pixel_values is not None and '<image>' not in question:
226
+ question = '<image>\n' + question
227
+ template = get_conv_template(self.template)
228
+ template.system_message = self.system_message
229
+ template.append_message(template.roles[0], question)
230
+ template.append_message(template.roles[1], None)
231
+ query = template.get_prompt()
232
+
233
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
+ query = query.replace('<image>', image_tokens, 1)
235
+ queries.append(query)
236
+
237
+ tokenizer.padding_side = 'left'
238
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
+ input_ids = model_inputs['input_ids'].to(self.device)
240
+ attention_mask = model_inputs['attention_mask'].to(self.device)
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
242
+ generation_config['eos_token_id'] = eos_token_id
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
251
+ return responses
252
+
253
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
+ verbose=False):
256
+
257
+ if history is None and pixel_values is not None and '<image>' not in question:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ self.img_context_token_id = img_context_token_id
266
+
267
+ template = get_conv_template(self.template)
268
+ template.system_message = self.system_message
269
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
270
+
271
+ history = [] if history is None else history
272
+ for (old_question, old_answer) in history:
273
+ template.append_message(template.roles[0], old_question)
274
+ template.append_message(template.roles[1], old_answer)
275
+ template.append_message(template.roles[0], question)
276
+ template.append_message(template.roles[1], None)
277
+ query = template.get_prompt()
278
+
279
+ if verbose and pixel_values is not None:
280
+ image_bs = pixel_values.shape[0]
281
+ print(f'dynamic ViT batch size: {image_bs}')
282
+
283
+ for num_patches in num_patches_list:
284
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
285
+ query = query.replace('<image>', image_tokens, 1)
286
+
287
+ model_inputs = tokenizer(query, return_tensors='pt')
288
+ input_ids = model_inputs['input_ids'].to(self.device)
289
+ attention_mask = model_inputs['attention_mask'].to(self.device)
290
+ generation_config['eos_token_id'] = eos_token_id
291
+ generation_output = self.generate(
292
+ pixel_values=pixel_values,
293
+ input_ids=input_ids,
294
+ attention_mask=attention_mask,
295
+ **generation_config
296
+ )
297
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
298
+ response = response.split(template.sep.strip())[0].strip()
299
+ history.append((question, response))
300
+ if return_history:
301
+ return response, history
302
+ else:
303
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
304
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
305
+ if verbose:
306
+ print(query_to_print, response)
307
+ return response
308
+
309
+ @torch.no_grad()
310
+ def generate(
311
+ self,
312
+ pixel_values: Optional[torch.FloatTensor] = None,
313
+ input_ids: Optional[torch.FloatTensor] = None,
314
+ attention_mask: Optional[torch.LongTensor] = None,
315
+ visual_features: Optional[torch.FloatTensor] = None,
316
+ generation_config: Optional[GenerationConfig] = None,
317
+ output_hidden_states: Optional[bool] = None,
318
+ **generate_kwargs,
319
+ ) -> torch.LongTensor:
320
+
321
+ assert self.img_context_token_id is not None
322
+ if pixel_values is not None:
323
+ if visual_features is not None:
324
+ vit_embeds = visual_features
325
+ else:
326
+ vit_embeds = self.extract_feature(pixel_values)
327
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
328
+ B, N, C = input_embeds.shape
329
+ input_embeds = input_embeds.reshape(B * N, C)
330
+
331
+ input_ids = input_ids.reshape(B * N)
332
+ selected = (input_ids == self.img_context_token_id)
333
+ assert selected.sum() != 0
334
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
335
+
336
+ input_embeds = input_embeds.reshape(B, N, C)
337
+ else:
338
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
339
+
340
+ outputs = self.language_model.generate(
341
+ inputs_embeds=input_embeds,
342
+ attention_mask=attention_mask,
343
+ generation_config=generation_config,
344
+ output_hidden_states=output_hidden_states,
345
+ use_cache=True,
346
+ **generate_kwargs,
347
+ )
348
+
349
+ return outputs
350
+
351
+ @property
352
+ def lm_head(self):
353
+ return self.language_model.get_output_embeddings()
354
+
355
+ def get_input_embeddings(self):
356
+ return self.language_model.get_input_embeddings()
357
+
358
+ def get_output_embeddings(self):
359
+ return self.language_model.get_output_embeddings()
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }