unsubscribe commited on
Commit
8f9ec35
Β·
verified Β·
1 Parent(s): 938c930

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -3
README.md CHANGED
@@ -1,3 +1,126 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ ---
5
+
6
+ # InternVL2-8B-AWQ
7
+
8
+ [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[πŸ†• Blog\]](https://internvl.github.io/blog/) [\[πŸ“œ InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[πŸ“œ InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
9
+
10
+ [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[πŸš€ Quick Start\]](#quick-start) [\[πŸ“– 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) \[🌟 [ι­”ζ­η€ΎεŒΊ](https://modelscope.cn/organization/OpenGVLab) | [教程](https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg) \]
11
+
12
+ ## Introduction
13
+
14
+ <div align="center">
15
+ <img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
16
+ </div>
17
+
18
+ ### INT4 Weight-only Quantization and Deployment (W4A16)
19
+
20
+ LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
21
+
22
+ LMDeploy supports the following NVIDIA GPU for W4A16 inference:
23
+
24
+ - Turing(sm75): 20 series, T4
25
+
26
+ - Ampere(sm80,sm86): 30 series, A10, A16, A30, A100
27
+
28
+ - Ada Lovelace(sm90): 40 series
29
+
30
+ Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.
31
+
32
+ ```shell
33
+ pip install lmdeploy[all]
34
+ ```
35
+
36
+ This article comprises the following sections:
37
+
38
+ <!-- toc -->
39
+
40
+ - [Inference](#inference)
41
+ - [Service](#service)
42
+
43
+ <!-- tocstop -->
44
+
45
+ ### Inference
46
+
47
+ Trying the following codes, you can perform the batched offline inference with the quantized model:
48
+
49
+ ```python
50
+ from lmdeploy import pipeline, TurbomindEngineConfig
51
+ from lmdeploy.vl import load_image
52
+
53
+ model = 'OpenGVLab/InternVL2-8B-AWQ'
54
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
55
+ backend_config = TurbomindEngineConfig(model_format='awq')
56
+ pipe = pipeline(model, backend_config=backend_config, log_level='INFO')
57
+ response = pipe(('describe this image', image))
58
+ print(response.text)
59
+ ```
60
+
61
+ For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
62
+
63
+ ### Service
64
+
65
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
66
+
67
+ ```shell
68
+ lmdeploy serve api_server OpenGVLab/InternVL2-8B-AWQ --server-port 23333
69
+ ```
70
+
71
+ To use the OpenAI-style interface, you need to install OpenAI:
72
+
73
+ ```shell
74
+ pip install openai
75
+ ```
76
+
77
+ Then, use the code below to make the API call:
78
+
79
+ ```python
80
+ from openai import OpenAI
81
+
82
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
83
+ model_name = client.models.list().data[0].id
84
+ response = client.chat.completions.create(
85
+ model=model_name,
86
+ messages=[{
87
+ 'role':
88
+ 'user',
89
+ 'content': [{
90
+ 'type': 'text',
91
+ 'text': 'describe this image',
92
+ }, {
93
+ 'type': 'image_url',
94
+ 'image_url': {
95
+ 'url':
96
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
97
+ },
98
+ }],
99
+ }],
100
+ temperature=0.8,
101
+ top_p=0.8)
102
+ print(response)
103
+ ```
104
+
105
+ ## License
106
+
107
+ This project is released under the MIT license, while InternLM is licensed under the Apache-2.0 license.
108
+
109
+ ## Citation
110
+
111
+ If you find this project useful in your research, please consider citing:
112
+
113
+ ```BibTeX
114
+ @article{chen2023internvl,
115
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
116
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
117
+ journal={arXiv preprint arXiv:2312.14238},
118
+ year={2023}
119
+ }
120
+ @article{chen2024far,
121
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
122
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
123
+ journal={arXiv preprint arXiv:2404.16821},
124
+ year={2024}
125
+ }
126
+ ```