File size: 21,083 Bytes
638aec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from functools import partial
from typing import Optional

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from peft import LoraConfig, get_peft_model
from timm.models.layers import DropPath
from torch import nn
from transformers import GenerationConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_internvl import InternVLConfig
from .modeling_intern_vit import (InternVisionEmbeddings, InternVisionEncoder,
                                  InternVisionModel)
from .modeling_qllama import LlamaForCausalLM, _expand_mask, _make_causal_mask

try:
    from .flash_attention import FlashAttention  # v1/v2
except:
    print('FlashAttention is not installed.')

logger = logging.get_logger(__name__)


class InternVLPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = InternVLConfig
    base_model_prefix = 'internvl'
    supports_gradient_checkpointing = True
    _keys_to_ignore_on_load_missing = [
        r'position_ids',
    ]
    _no_split_modules = ['InternAttention', 'LlamaDecoderLayer', 'LlamaForCausalLM']
    _skip_keys_device_placement = 'past_key_values'
    _keep_in_fp32_modules = ['wo']

    def _init_weights(self, module):
        """Initialize the weights"""
        factor = self.config.initializer_range
        if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=factor)
            if hasattr(module, 'bias') and module.bias is not None:
                module.bias.data.zero_()
        if isinstance(module, InternVisionEmbeddings):
            if hasattr(self.config, 'vision_config'):
                factor = self.config.vision_config.initializer_range
            nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
            nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, InternVisionModel):
            module.gradient_checkpointing = value
        if isinstance(module, InternVisionEncoder):
            module.gradient_checkpointing = value


class CrossAttention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, out_dim=None):
        super().__init__()
        if out_dim is None:
            out_dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        assert all_head_dim == dim

        self.q = nn.Linear(dim, all_head_dim, bias=False)
        self.k = nn.Linear(dim, all_head_dim, bias=False)
        self.v = nn.Linear(dim, all_head_dim, bias=False)

        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, out_dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, k=None, v=None):
        B, N, C = x.shape
        N_k = k.shape[1]
        N_v = v.shape[1]

        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = self.k_bias
            v_bias = self.v_bias

        q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
        q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)  # (B, N_head, N_q, dim)

        k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
        k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)

        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
        v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B, N_head, N_q, N_k)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class AttentiveBlock(nn.Module):

    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
        super().__init__()

        self.norm1_q = norm_layer(dim)
        self.norm1_k = norm_layer(dim)
        self.norm1_v = norm_layer(dim)
        self.cross_attn = CrossAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
            proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
        x_q = self.norm1_q(x_q + pos_q)
        x_k = self.norm1_k(x_kv + pos_k)
        x_v = self.norm1_v(x_kv)
        x = self.cross_attn(x_q, k=x_k, v=x_v)

        return x


class AttentionPoolingBlock(AttentiveBlock):

    def forward(self, x):
        x_q = x.mean(1, keepdim=True)
        x_kv, pos_q, pos_k = x, 0, 0
        x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
        x = x.squeeze(1)
        return x


class InternVLModel(InternVLPreTrainedModel):
    config_class = InternVLConfig
    main_input_name = 'pixel_values'

    def __init__(self, config: InternVLConfig):
        super().__init__(config)

        text_hidden_size = config.qllama_config.hidden_size
        vision_hidden_size = config.vision_config.hidden_size
        clip_embed_dim = config.clip_embed_dim
        attn_pool_num_heads = config.attn_pool_num_heads
        config.qllama_config.num_query_token = config.num_query_token
        self.num_query_token = config.num_query_token
        self.label_smoothing = config.label_smoothing

        self.vision_model = InternVisionModel(config.vision_config)  # frozen
        self.qllama = LlamaForCausalLM(config.qllama_config)  # frozen
        self.query_tokens = nn.Parameter(  # trainable
            torch.zeros(1, config.num_query_token, text_hidden_size)
        )

        self.text_projection = nn.Parameter(torch.empty(text_hidden_size, clip_embed_dim))  # frozen
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))  # trainable
        self.clip_projector = AttentionPoolingBlock(  # frozen
            dim=vision_hidden_size, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
            drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
        self.clip_projector2 = AttentionPoolingBlock(  # trainable
            dim=text_hidden_size, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
            drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
        self.itm_head = nn.Linear(text_hidden_size, 2)  # trainable
        self.gradient_checkpointing = True

        # Initialize weights and apply final processing
        # self.post_init()

        if config.use_backbone_lora:
            self.wrap_backbone_lora(r=config.use_backbone_lora)
        if config.use_qllama_lora:
            self.wrap_qllama_lora(r=config.use_qllama_lora)
        if config.force_image_size:
            self.vision_model.resize_pos_embeddings(
                old_size=config.vision_config.image_size,
                new_size=config.force_image_size,
                patch_size=config.vision_config.patch_size
            )

    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.vision_model = get_peft_model(self.vision_model, lora_config)
        self.vision_model.print_trainable_parameters()

    def wrap_qllama_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                            'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.qllama = get_peft_model(self.qllama, lora_config)
        self.qllama.print_trainable_parameters()

    def get_input_embeddings(self):
        return self.qllama.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.qllama.set_input_embeddings(value)

    def set_output_embeddings(self, new_embeddings):
        self.qllama.set_output_embeddings(new_embeddings)

    def get_output_embeddings(self) -> nn.Module:
        return self.qllama.get_output_embeddings()

    @torch.no_grad()
    def generate(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.FloatTensor,
            attention_mask: torch.LongTensor,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict)
        image_embeds = vision_outputs[0]

        batch_size = image_embeds.shape[0]
        input_embeds = self.get_input_embeddings()(input_ids)
        query_tokens = self.query_tokens.repeat(batch_size, 1, 1)
        input_embeds = torch.cat([query_tokens, input_embeds], dim=1)
        image_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device)
        attention_mask = torch.cat([image_attention_mask, attention_mask], dim=1)

        outputs = self.qllama.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            vision_hidden_states=image_embeds,
            generation_config=generation_config,
            use_zero_attention_mask=True,
            **generate_kwargs,
        )

        return outputs

    def get_text_features(
            self,
            input_ids: torch.Tensor,
            attention_mask: torch.Tensor,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        r"""
        Returns:
            text_outputs (`CausalLMOutputWithPast`, or `tuple(torch.FloatTensor)` if `return_dict=False`):
                The language model outputs. If `return_dict=True`, the output is a [`CausalLMOutputWithPast`] that
                contains the language model logits, the past key values and the hidden states if
                `output_hidden_states=True`.
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        input_embeds = self.get_input_embeddings()(input_ids)
        attention_mask = _expand_mask(attention_mask, input_embeds.dtype).to(
            input_embeds.device)  # [bsz, 1, tgt_seq_len, src_seq_len]
        attention_mask += _make_causal_mask(
            (attention_mask.shape[0], attention_mask.shape[2]),
            input_embeds.dtype,
            device=input_embeds.device
        )
        if type(self.qllama.model) == LlamaForCausalLM:
            outputs = self.qllama.model.model.forward_train(
                inputs_embeds=input_embeds,
                vision_hidden_states=None,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            ).last_hidden_state
        else:
            outputs = self.qllama.model.forward_train(
                inputs_embeds=input_embeds,
                vision_hidden_states=None,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            ).last_hidden_state
        return outputs

    def get_image_features(
            self,
            pixel_values: torch.FloatTensor,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict)
        image_embeds = vision_outputs[0]
        backbone_embeds = image_embeds

        batch_size = image_embeds.shape[0]
        input_embeds = self.query_tokens.repeat(batch_size, 1, 1)

        attention_mask = torch.ones(input_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
        attention_mask = _expand_mask(attention_mask, input_embeds.dtype).to(
            input_embeds.device)  # [bsz, 1, tgt_seq_len, src_seq_len]
        if type(self.qllama.model) == LlamaForCausalLM:
            outputs = self.qllama.model.model.forward_train(
                inputs_embeds=input_embeds,
                vision_hidden_states=image_embeds,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            ).last_hidden_state
        else:
            outputs = self.qllama.model.forward_train(
                inputs_embeds=input_embeds,
                vision_hidden_states=image_embeds,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            ).last_hidden_state
        return backbone_embeds, outputs

    def encode_image(self, image, mode):
        if mode == 'InternVL-C':
            vision_outputs = self.vision_model(
                pixel_values=image,
                output_hidden_states=False,
                return_dict=True)
            image_embeds = vision_outputs[0]
            image_embeds = self.clip_projector(image_embeds)
        elif mode == 'InternVL-G':
            backbone_embeds, image_embeds = self.get_image_features(
                pixel_values=image,
                output_hidden_states=False,
                return_dict=True,
            )
            backbone_embeds = self.clip_projector(backbone_embeds)
            image_embeds = self.clip_projector2(image_embeds)
            # ensemble
            backbone_embeds = backbone_embeds / backbone_embeds.norm(dim=1, keepdim=True)
            image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
            image_embeds = image_embeds + backbone_embeds
        else:
            raise NotImplementedError
        return image_embeds

    def encode_text(self, text):
        attention_mask = text > 0
        text_embeds = self.get_text_features(
            input_ids=text,
            attention_mask=attention_mask,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        text_embeds = text_embeds[torch.arange(text_embeds.shape[0]), attention_mask.sum(1) - 1]
        text_embeds = text_embeds @ self.text_projection
        return text_embeds

    def forward(self, image, text, mode='InternVL-C'):
        assert mode in ['InternVL-C', 'InternVL-G'], 'mode must be InternVL-C or InternVL-G'
        image_features = self.encode_image(image, mode)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        return logits_per_image, logits_per_text


class InternVL_C(InternVLModel):

    def encode_image(self, image):
        vision_outputs = self.vision_model(
            pixel_values=image,
            output_hidden_states=False,
            return_dict=True)
        image_embeds = vision_outputs[0]
        image_embeds = self.clip_projector(image_embeds)
        return image_embeds

    def encode_text(self, text):
        attention_mask = text > 0
        text_embeds = self.get_text_features(
            input_ids=text,
            attention_mask=attention_mask,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        text_embeds = text_embeds[torch.arange(text_embeds.shape[0]), attention_mask.sum(1) - 1]
        text_embeds = text_embeds @ self.text_projection
        return text_embeds

    def forward(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        return logits_per_image, logits_per_text


class InternVL_G(InternVLModel):

    def encode_image(self, image):
        backbone_embeds, image_embeds = self.get_image_features(
            pixel_values=image,
            output_hidden_states=False,
            return_dict=True,
        )
        backbone_embeds = self.clip_projector(backbone_embeds)
        image_embeds = self.clip_projector2(image_embeds)
        # ensemble
        backbone_embeds = backbone_embeds / backbone_embeds.norm(dim=1, keepdim=True)
        image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
        image_embeds = image_embeds + backbone_embeds
        return image_embeds

    def encode_text(self, text):
        attention_mask = text > 0
        text_embeds = self.get_text_features(
            input_ids=text,
            attention_mask=attention_mask,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        text_embeds = text_embeds[torch.arange(text_embeds.shape[0]), attention_mask.sum(1) - 1]
        text_embeds = text_embeds @ self.text_projection
        return text_embeds

    def forward(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        return logits_per_image, logits_per_text