|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Any, List, Optional, Tuple, Union |
|
from copy import deepcopy |
|
|
|
import torch.distributed as dist |
|
import torch.utils.checkpoint |
|
import torch.nn as nn |
|
import transformers |
|
|
|
from peft import LoraConfig, get_peft_model |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
LlamaTokenizer, Qwen2ForCausalLM) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
from transformers.trainer_pt_utils import LabelSmoother |
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index |
|
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
from .conversation import get_conv_template |
|
from .modeling_internlm2 import InternLM2ForCausalLM |
|
from .modeling_holistic_embedding import (HolisticEmbedding, |
|
HolisticEmbeddingConfig) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
import operator |
|
|
|
from packaging import version |
|
op_func = getattr(operator, op) |
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
config_class = InternVLChatConfig |
|
|
|
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer', |
|
'Phi3DecoderLayer', 'Qwen2DecoderLayer'] |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: InternVLChatConfig, embedding_model=None, language_model=None): |
|
super().__init__(config) |
|
|
|
assert version_cmp(transformers.__version__, '4.37.0', 'ge') |
|
image_size = config.force_image_size or config.embedding_config.image_size |
|
patch_size = config.embedding_config.patch_size |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.select_layer = config.select_layer |
|
self.template = config.template |
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
self.downsample_ratio = config.downsample_ratio |
|
self.ps_version = config.ps_version |
|
self.use_thumbnail = config.use_thumbnail |
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
logger.info(f'ps_version: {self.ps_version}') |
|
if embedding_model is not None: |
|
self.embedding_model = embedding_model |
|
else: |
|
self.embedding_model = HolisticEmbedding(config.embedding_config) |
|
|
|
if language_model is not None: |
|
self.language_model = language_model |
|
else: |
|
if config.llm_config.architectures[0] == 'LlamaForCausalLM': |
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': |
|
self.language_model = InternLM2ForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': |
|
self.language_model = Qwen2ForCausalLM(config.llm_config) |
|
else: |
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') |
|
|
|
self.img_context_token_id = None |
|
self.conv_template = get_conv_template(self.template) |
|
self.system_message = self.conv_template.system_message |
|
self.num_samples = 0 |
|
|
|
if config.use_backbone_lora: |
|
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) |
|
|
|
if config.use_llm_lora: |
|
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) |
|
|
|
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
) |
|
self.embedding_model = get_peft_model(self.embedding_model, lora_config) |
|
self.embedding_model.print_trainable_parameters() |
|
|
|
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', |
|
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'], |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
task_type='CAUSAL_LM' |
|
) |
|
self.language_model = get_peft_model(self.language_model, lora_config) |
|
self.language_model.enable_input_require_grads() |
|
self.language_model.print_trainable_parameters() |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor = None, |
|
input_ids: torch.LongTensor = None, |
|
input_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
image_flags: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
statistics: Optional[torch.LongTensor] = None, |
|
loss_weight: Optional[List] = None, |
|
loss_reduction_all_gather: Optional[bool] = False, |
|
query = None, |
|
hd_input_ids = None, |
|
hd_attention_mask = None, |
|
hd_position_ids = None, |
|
hd_input_embeds = None, |
|
hd_labels = None, |
|
hd_loss_weight = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_embeds is None: |
|
if image_flags is not None: |
|
image_flags = image_flags.squeeze(-1) |
|
pixel_values = pixel_values[image_flags == 1] |
|
if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']: |
|
assert hd_input_ids is not None, 'hd_input_ids is required for pixel_shuffle_loc=post' |
|
embedding_input_ids = hd_input_ids |
|
embedding_attention_mask = hd_attention_mask |
|
embedding_position_ids = hd_position_ids |
|
else: |
|
embedding_input_ids = input_ids |
|
embedding_attention_mask = attention_mask |
|
embedding_position_ids = position_ids |
|
image_embeds, input_embeds, next_past_key_values = self.embedding_model(input_ids=embedding_input_ids, |
|
pixel_values=pixel_values, |
|
attention_mask=embedding_attention_mask, |
|
position_ids=embedding_position_ids, |
|
use_cache=use_cache,) |
|
|
|
B, N = embedding_input_ids.shape |
|
image_batch_size = pixel_values.shape[0] if pixel_values is not None else 0 |
|
C = image_embeds.shape[-1] |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: |
|
print(f'dynamic ViT batch size: {image_batch_size}, images per sample: {image_batch_size / B}, dynamic token length: {N}') |
|
if statistics is not None: |
|
num_samples, num_padding_tokens, num_padding_images = statistics.tolist() |
|
self.num_samples += num_samples |
|
print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}') |
|
|
|
if image_batch_size != 0: |
|
if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) == 'post': |
|
B, N = input_ids.shape |
|
llm_input_embeds = torch.zeros(input_ids.shape[1], C, device=input_ids.device, dtype=input_embeds.dtype) |
|
llm_selected = input_ids.flatten() == self.img_context_token_id |
|
hd_llm_selected = hd_input_ids.flatten() == self.img_context_token_id |
|
llm_input_embeds[~llm_selected] = input_embeds[~hd_llm_selected] |
|
llm_input_embeds[llm_selected] = image_embeds.reshape(-1, C) |
|
input_embeds = llm_input_embeds |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
else: |
|
next_past_key_values = [] |
|
if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']: |
|
embedding_input_embeds = hd_input_embeds |
|
embedding_attention_mask = hd_attention_mask |
|
embedding_position_ids = hd_position_ids |
|
else: |
|
embedding_input_embeds = input_embeds |
|
embedding_attention_mask = attention_mask |
|
embedding_position_ids = position_ids |
|
for layer_idx, layer_module in enumerate(self.embedding_model.encoder): |
|
outputs = layer_module( |
|
hidden_states=embedding_input_embeds, |
|
attention_mask=embedding_attention_mask, |
|
position_ids=embedding_position_ids, |
|
past_key_value=past_key_values[layer_idx], |
|
use_cache=use_cache, |
|
) |
|
embedding_input_embeds = outputs[0] |
|
if use_cache: |
|
next_past_key_values.append(outputs[1]) |
|
|
|
input_embeds = embedding_input_embeds |
|
|
|
if self.config.normalize_encoder_output: |
|
input_embeds = input_embeds / input_embeds.norm(dim=-1, keepdim=True) |
|
|
|
llm_attention_mask = attention_mask |
|
llm_position_ids = position_ids |
|
|
|
outputs = self.language_model( |
|
inputs_embeds=input_embeds, |
|
attention_mask=llm_attention_mask, |
|
position_ids=llm_position_ids, |
|
past_key_values=past_key_values[layer_idx+1:] if past_key_values is not None else None, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None and loss_weight is not None: |
|
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device) |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
shift_weights = loss_weight[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(reduction='none') |
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
shift_weights = shift_weights.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
shift_weights = shift_weights.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
shift_weights_sum = shift_weights.sum() |
|
if loss_reduction_all_gather: |
|
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG) |
|
|
|
loss = loss * shift_weights |
|
loss = loss.sum() / shift_weights_sum |
|
elif labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
if use_cache: |
|
for past_key_value in outputs.past_key_values: |
|
next_past_key_values.append(past_key_value) |
|
else: |
|
next_past_key_values = None |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=next_past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, |
|
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', |
|
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None): |
|
if history is not None or return_history: |
|
print('Now multi-turn chat is not supported in batch_chat.') |
|
raise NotImplementedError |
|
|
|
if image_counts is not None: |
|
num_patches_list = image_counts |
|
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
queries = [] |
|
for idx, num_patches in enumerate(num_patches_list): |
|
question = questions[idx] |
|
if pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
template = get_conv_template(self.template) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
queries.append(query) |
|
|
|
tokenizer.padding_side = 'left' |
|
model_inputs = tokenizer(queries, return_tensors='pt', padding=True) |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) |
|
responses = [response.split(template.sep)[0].strip() for response in responses] |
|
return responses |
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
verbose=False): |
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
|
|
if num_patches_list is None: |
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
|
|
history = [] if history is None else history |
|
for (old_question, old_answer) in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
hd_query = deepcopy(query) |
|
for num_patches in num_patches_list: |
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
hd_image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * int(self.num_image_token // self.downsample_ratio**2) * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
hd_query = hd_query.replace('<image>', hd_image_tokens, 1) |
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
hd_model_inputs = tokenizer(hd_query, return_tensors='pt') |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
hd_input_ids = hd_model_inputs['input_ids'].cuda() |
|
hd_attention_mask = hd_model_inputs['attention_mask'].cuda() |
|
|
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = super().generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
hd_input_ids=hd_input_ids, |
|
hd_attention_mask=hd_attention_mask, |
|
**generation_config |
|
) |
|
generation_output = generation_output[:, input_ids.shape[1]:] |
|
|
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
response = response.split(template.sep)[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
if verbose: |
|
print(query_to_print, response) |
|
return response |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, input_embeds=None, |
|
tile_pos_offsets=None, hd_input_ids=None, hd_attention_mask=None, img_mask=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
past_length = past_key_values[-1][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
input_embeds = self.embedding_model.get_input_embeddings(input_ids) |
|
hd_input_ids = input_ids |
|
hd_input_embeds = input_embeds |
|
|
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
hd_position_ids = kwargs.get('hd_position_ids', None) |
|
if hd_attention_mask is not None and hd_position_ids is None: |
|
|
|
hd_position_ids = hd_attention_mask.long().cumsum(-1) - 1 |
|
hd_position_ids.masked_fill_(hd_attention_mask == 0, 1) |
|
if past_key_values: |
|
hd_position_ids = hd_position_ids[:, -hd_input_ids.shape[1]:] |
|
|
|
if input_embeds is not None: |
|
model_inputs = {'input_embeds': input_embeds, 'hd_input_embeds': hd_input_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids, 'pixel_values': kwargs.get('pixel_values'), 'hd_input_ids': hd_input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
'position_ids': position_ids, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache'), |
|
'attention_mask': attention_mask, |
|
'hd_position_ids': hd_position_ids, |
|
'hd_attention_mask': hd_attention_mask, |
|
} |
|
) |
|
return model_inputs |