|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Union |
|
import json |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class HolisticEmbeddingConfig(PretrainedConfig): |
|
|
|
model_type = 'holistic_embedding' |
|
|
|
def __init__( |
|
self, |
|
num_hidden_layers=32, |
|
initializer_factor=1e-5, |
|
use_autoregressive_loss=False, |
|
|
|
num_channels=3, |
|
patch_size=14, |
|
image_size=224, |
|
|
|
hidden_size=4096, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
max_position_embeddings=4096, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
|
|
intermediate_size=11008, |
|
mlp_bias=False, |
|
hidden_act='silu', |
|
|
|
rms_norm_eps=1e-5, |
|
|
|
pretraining_tp=1, |
|
use_ls=True, |
|
use_img_start_end_tokens=True, |
|
special_token_maps={}, |
|
llm_vocab_size=92553, |
|
llm_hidden_size=2048, |
|
attn_implementation='flash_attention_2', |
|
downsample_ratio=0.5, |
|
img_context_token_id=92546, |
|
pixel_shuffle_loc="pre", |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.num_hidden_layers = num_hidden_layers |
|
self.initializer_factor = initializer_factor |
|
self.use_autoregressive_loss = use_autoregressive_loss |
|
|
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
|
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self.max_position_embeddings = max_position_embeddings |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
|
|
self.intermediate_size = intermediate_size |
|
self.mlp_bias = mlp_bias |
|
self.hidden_act = hidden_act |
|
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
|
self.pretraining_tp = pretraining_tp |
|
self.use_ls = use_ls |
|
self.use_img_start_end_tokens = use_img_start_end_tokens |
|
|
|
self.special_token_maps = special_token_maps |
|
self.llm_vocab_size = llm_vocab_size |
|
self.llm_hidden_size = llm_hidden_size |
|
self.attn_implementation = attn_implementation |
|
self.downsample_ratio = downsample_ratio |
|
self.img_context_token_id = img_context_token_id |
|
self.pixel_shuffle_loc = pixel_shuffle_loc |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if 'vision_config' in config_dict: |
|
config_dict = config_dict['vision_config'] |
|
|
|
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
@classmethod |
|
def from_dict_path(cls, config_path): |
|
with open(config_path, 'r') as f: |
|
config_dict = json.load(f) |
|
|
|
return cls.from_dict(config_dict) |
|
|