Image-to-Text
Chinese
English
FLIP / FLIP-demo /eval /pretrain_eval.py
OpenFace-CQUPT
Upload 14 files
6e6d6a7 verified
import numpy as np
import time
import datetime
import torch
import torch.nn.functional as F
import torch.distributed as dist
from models import utils
@torch.no_grad()
def evaluation(args, model, data_loader, device):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print('Computing features for evaluation...')
start_time = time.time()
num_tasks = utils.get_world_size()
rank = utils.get_rank()
# ======================================== text feature ======================================== #
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_ids = []
text_embeds = []
text_atts = []
for i in range(0, num_text, text_bs):
text = texts[i: min(num_text, i + text_bs)]
text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=65,
return_tensors="pt").to(device)
text_feat = model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, mode='text')
text_embed = F.normalize(model.text_proj(text_feat.last_hidden_state[:,0,:]), dim=-1)
text_embeds.append(text_embed)
text_ids.append(text_input.input_ids)
text_atts.append(text_input.attention_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_ids = torch.cat(text_ids, dim=0)
text_atts = torch.cat(text_atts, dim=0)
# ======================================== image&sketch feature ======================================== #
image_feats = []
image_embeds = []
for i, (image, img_id) in enumerate(data_loader):
image = image.to(device)
image_feat = model.visual_encoder(image).last_hidden_state
image_embed = F.normalize(model.vision_proj(image_feat[:,0,:]), dim=-1)
image_feats.append(image_feat.cpu())
image_embeds.append(image_embed)
image_feats = torch.cat(image_feats, dim=0).to(device)
image_embeds = torch.cat(image_embeds, dim=0).to(device)
print('Computing features Cost time {}'.format(time.time() - start_time))
# ======================================== i2t score ======================================== #
sims_matrix = image_embeds @ text_embeds.t()
score_matrix_i2t = torch.full((len(data_loader.dataset.image), len(texts)), -100.0).to(device)
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
k_test = 256
for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
encoder_output = image_feats[start + i].repeat(k_test, 1, 1).to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
output = model.text_encoder(text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_i2t[start + i, topk_idx] = score + topk_sim
# ======================================== t2i score ======================================== #
sims_matrix = sims_matrix.t()
score_matrix_t2i = torch.full((len(texts), len(data_loader.dataset.image)), -100.0).to(device)
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
encoder_output = image_feats[topk_idx].to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
output = model.text_encoder(text_ids[start + i].repeat(k_test, 1),
attention_mask=text_atts[start + i].repeat(k_test, 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2i[start + i, topk_idx] = topk_sim + score
if args.distributed:
dist.barrier()
torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Evaluation time {}'.format(total_time_str))
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
# Images->Text
ranks = np.zeros(scores_i2t.shape[0])
for index, score in enumerate(scores_i2t):
inds = np.argsort(score)[::-1]
# Score
rank = 1e20
for i in img2txt[index]:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
# Text->Images
ranks = np.zeros(scores_t2i.shape[0])
for index, score in enumerate(scores_t2i):
inds = np.argsort(score)[::-1]
ranks[index] = np.where(inds == txt2img[index])[0][0]
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
tr_mean = (tr1 + tr5 + tr10) / 3
ir_mean = (ir1 + ir5 + ir10) / 3
r_mean = (tr_mean + ir_mean) / 2
eval_result = {
'txt_r1': tr1,
'txt_r5': tr5,
'txt_r10': tr10,
'txt_r_mean': tr_mean,
'img_r1': ir1,
'img_r5': ir5,
'img_r10': ir10,
'img_r_mean': ir_mean,
'r_mean': r_mean}
return eval_result