Image-to-Text
Chinese
English
File size: 8,069 Bytes
3d7aa36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
'''
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
'''
import argparse
import os
from ruamel.yaml import YAML
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from models.fflip_pretrain import fflip_pretrain
from models import utils
from eval.pretrain_eval import evaluation, itm_eval
from models.utils import warmup_lr_schedule, step_lr_schedule
from data import create_dataset, create_sampler, create_loader
import sys


def train(model, data_loader, optimizer, epoch, device, config):
    # train
    model.train()  
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
    metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
    metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
    
    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50   
    # 混合精度训练配置
    scaler = GradScaler()

    for i, (image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        if epoch==0:
            warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
        image = image.to(device, non_blocking=True)
        idx = idx.to(device,non_blocking=True)

        optimizer.zero_grad()
        
        # ramp up alpha in the first 2 epochs
        alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader))) 

        loss_ita, loss_itm = model(image, caption, alpha = alpha, idx=idx)
        loss = loss_ita + loss_itm

        # loss.backward()
        # optimizer.step()
        # mixed  precision training
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()   

        metric_logger.update(loss_ita=loss_ita.item())
        metric_logger.update(loss_itm=loss_itm.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])  

        
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}  


def main(args, config):
    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True

    #### Dataset #### 
    print("Creating dataset")
    train_dataset, test_dataset = create_dataset(config['dataset'], config)

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()
        samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None]
    else:
        samplers = [None, None]

    train_loader, test_loader = create_loader([train_dataset, test_dataset], samplers,
                                            batch_size=[config['batch_size_train']] + [config['batch_size_test']],
                                            num_workers=[8, 8],
                                            is_trains=[True, False],
                                            collate_fns=[None, None])
    #### Model #### 
    print("Creating model")
    model = fflip_pretrain(pretrained=config['pretrained'], config=config['config'], vit=config['vit'], queue_size=config['queue_size'])

    model = model.to(device)

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
    
    start_epoch = 0
    if args.checkpoint:    
        checkpoint = torch.load(args.checkpoint, map_location='cpu') 
        state_dict = checkpoint['model']    
        model.load_state_dict(state_dict)
        
        optimizer.load_state_dict(checkpoint['optimizer'])
        start_epoch = checkpoint['epoch'] 
        print('resume checkpoint from %s'%args.checkpoint)    
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
    
    best = 0
    best_epoch = 0

    print("Start training")
    start_time = time.time()    
    for epoch in range(start_epoch, config['max_epoch']):
        if not args.evaluate:
            if args.distributed:
                    train_loader.sampler.set_epoch(epoch)
            step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
                    
            train_stats = train(model, train_loader, optimizer, epoch, device, config) 

        score_test_i2t, score_test_t2i = evaluation(args, model_without_ddp, test_loader, device, config)
        
        if utils.is_main_process():  
            test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img,
                                   test_loader.dataset.img2txt)
            print(test_result)
            if args.evaluate:
                log_stats = {**{f'test_{k}': v for k, v in test_result.items()}}
                with open(os.path.join(args.output_dir, "evaluate_log.txt"), "a") as f:
                    f.write(json.dumps(log_stats) + "\n")
            else:
                log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                             **{f'test_{k}': v for k, v in test_result.items()},
                                'epoch': epoch,
                                'best_epoch': best_epoch,
                                }
                with open(os.path.join(args.output_dir, "train_log.txt"), "a") as f:
                    f.write(json.dumps(log_stats) + "\n")     

            save_obj = {
                    'model': model_without_ddp.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'config': config,
                    'epoch': epoch,
                }
            torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))

            if test_result['r_mean'] > best:
                torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
                best = test_result['r_mean']
                best_epoch = epoch
                
        if args.distributed:
            dist.barrier()        
                
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == '__main__':
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/pretrain.yaml')
    parser.add_argument('--output_dir', default='./outputs')
    parser.add_argument('--checkpoint', default='')
    parser.add_argument('--evaluate', type=bool, default=False)
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=False, type=bool, help='whether to use distributed mode to training')
    args = parser.parse_args()
    
    yaml = YAML(typ='safe')   
    config = yaml.load(open(args.config, 'r'))

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
    
    main(args, config)