File size: 8,069 Bytes
3d7aa36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Junnan Li
'''
import argparse
import os
from ruamel.yaml import YAML
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from models.fflip_pretrain import fflip_pretrain
from models import utils
from eval.pretrain_eval import evaluation, itm_eval
from models.utils import warmup_lr_schedule, step_lr_schedule
from data import create_dataset, create_sampler, create_loader
import sys
def train(model, data_loader, optimizer, epoch, device, config):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
# 混合精度训练配置
scaler = GradScaler()
for i, (image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if epoch==0:
warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
image = image.to(device, non_blocking=True)
idx = idx.to(device,non_blocking=True)
optimizer.zero_grad()
# ramp up alpha in the first 2 epochs
alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
loss_ita, loss_itm = model(image, caption, alpha = alpha, idx=idx)
loss = loss_ita + loss_itm
# loss.backward()
# optimizer.step()
# mixed precision training
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating dataset")
train_dataset, test_dataset = create_dataset(config['dataset'], config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None]
else:
samplers = [None, None]
train_loader, test_loader = create_loader([train_dataset, test_dataset], samplers,
batch_size=[config['batch_size_train']] + [config['batch_size_test']],
num_workers=[8, 8],
is_trains=[True, False],
collate_fns=[None, None])
#### Model ####
print("Creating model")
model = fflip_pretrain(pretrained=config['pretrained'], config=config['config'], vit=config['vit'], queue_size=config['queue_size'])
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
start_epoch = 0
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
print('resume checkpoint from %s'%args.checkpoint)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
best = 0
best_epoch = 0
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, config['max_epoch']):
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
train_stats = train(model, train_loader, optimizer, epoch, device, config)
score_test_i2t, score_test_t2i = evaluation(args, model_without_ddp, test_loader, device, config)
if utils.is_main_process():
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img,
test_loader.dataset.img2txt)
print(test_result)
if args.evaluate:
log_stats = {**{f'test_{k}': v for k, v in test_result.items()}}
with open(os.path.join(args.output_dir, "evaluate_log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'epoch': epoch,
'best_epoch': best_epoch,
}
with open(os.path.join(args.output_dir, "train_log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
if test_result['r_mean'] > best:
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = test_result['r_mean']
best_epoch = epoch
if args.distributed:
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/pretrain.yaml')
parser.add_argument('--output_dir', default='./outputs')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--evaluate', type=bool, default=False)
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=False, type=bool, help='whether to use distributed mode to training')
args = parser.parse_args()
yaml = YAML(typ='safe')
config = yaml.load(open(args.config, 'r'))
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config) |