zjowowen commited on
Commit
210373b
1 Parent(s): 115d809

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  type: CartPole-v0
22
  metrics:
23
  - type: mean_reward
24
- value: 198.6 +/- 4.2
25
  name: mean_reward
26
  ---
27
 
@@ -32,7 +32,7 @@ model-index:
32
 
33
  This implementation applies **MuZero** to the OpenAI/Gym/Box2d **CartPole-v0** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).
34
 
35
- **LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers.
36
 
37
  ## Model Usage
38
  ### Install the Dependencies
@@ -139,13 +139,16 @@ push_model_to_hub(
139
  github_repo_url="https://github.com/opendilab/LightZero",
140
  github_doc_model_url=None,
141
  github_doc_env_url=None,
142
- installation_guide="pip3 install DI-engine[common_env,video] LightZero",
 
 
 
143
  usage_file_by_git_clone="./muzero/cartpole_muzero_deploy.py",
144
  usage_file_by_huggingface_ding="./muzero/cartpole_muzero_download.py",
145
  train_file="./muzero/cartpole_muzero.py",
146
  repo_id="OpenDILabCommunity/CartPole-v0-MuZero",
147
- platform_info="[DI-engine](https://github.com/opendilab/di-engine) and [LightZero](https://github.com/opendilab/LightZero)",
148
- model_description="**LightZero** is a lightweight, efficient, and easy-to-understand open-source algorithm toolkit that combines Monte Carlo Tree Search (MCTS) and Deep Reinforcement Learning (RL).",
149
  create_repo=False
150
  )
151
 
@@ -288,7 +291,7 @@ exp_config = {
288
  - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/CartPole-v0-MuZero/blob/main/replay.mp4)
289
  <!-- Provide the size information for the model. -->
290
  - **Parameters total size:** 13548.13 KB
291
- - **Last Update Date:** 2023-12-05
292
 
293
  ## Environments
294
  <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
 
21
  type: CartPole-v0
22
  metrics:
23
  - type: mean_reward
24
+ value: 200.0 +/- 0.0
25
  name: mean_reward
26
  ---
27
 
 
32
 
33
  This implementation applies **MuZero** to the OpenAI/Gym/Box2d **CartPole-v0** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).
34
 
35
+ **LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).
36
 
37
  ## Model Usage
38
  ### Install the Dependencies
 
139
  github_repo_url="https://github.com/opendilab/LightZero",
140
  github_doc_model_url=None,
141
  github_doc_env_url=None,
142
+ installation_guide='''
143
+ pip3 install DI-engine[common_env,video]
144
+ pip3 install LightZero
145
+ ''',
146
  usage_file_by_git_clone="./muzero/cartpole_muzero_deploy.py",
147
  usage_file_by_huggingface_ding="./muzero/cartpole_muzero_download.py",
148
  train_file="./muzero/cartpole_muzero.py",
149
  repo_id="OpenDILabCommunity/CartPole-v0-MuZero",
150
+ platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
151
+ model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
152
  create_repo=False
153
  )
154
 
 
291
  - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/CartPole-v0-MuZero/blob/main/replay.mp4)
292
  <!-- Provide the size information for the model. -->
293
  - **Parameters total size:** 13548.13 KB
294
+ - **Last Update Date:** 2023-12-11
295
 
296
  ## Environments
297
  <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->