Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
type: CartPole-v0
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
-
value:
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
@@ -32,7 +32,7 @@ model-index:
|
|
32 |
|
33 |
This implementation applies **MuZero** to the OpenAI/Gym/Box2d **CartPole-v0** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).
|
34 |
|
35 |
-
**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers.
|
36 |
|
37 |
## Model Usage
|
38 |
### Install the Dependencies
|
@@ -139,13 +139,16 @@ push_model_to_hub(
|
|
139 |
github_repo_url="https://github.com/opendilab/LightZero",
|
140 |
github_doc_model_url=None,
|
141 |
github_doc_env_url=None,
|
142 |
-
installation_guide=
|
|
|
|
|
|
|
143 |
usage_file_by_git_clone="./muzero/cartpole_muzero_deploy.py",
|
144 |
usage_file_by_huggingface_ding="./muzero/cartpole_muzero_download.py",
|
145 |
train_file="./muzero/cartpole_muzero.py",
|
146 |
repo_id="OpenDILabCommunity/CartPole-v0-MuZero",
|
147 |
-
platform_info="[
|
148 |
-
model_description="**LightZero** is
|
149 |
create_repo=False
|
150 |
)
|
151 |
|
@@ -288,7 +291,7 @@ exp_config = {
|
|
288 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/CartPole-v0-MuZero/blob/main/replay.mp4)
|
289 |
<!-- Provide the size information for the model. -->
|
290 |
- **Parameters total size:** 13548.13 KB
|
291 |
-
- **Last Update Date:** 2023-12-
|
292 |
|
293 |
## Environments
|
294 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
|
|
21 |
type: CartPole-v0
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
+
value: 200.0 +/- 0.0
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
|
|
32 |
|
33 |
This implementation applies **MuZero** to the OpenAI/Gym/Box2d **CartPole-v0** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).
|
34 |
|
35 |
+
**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).
|
36 |
|
37 |
## Model Usage
|
38 |
### Install the Dependencies
|
|
|
139 |
github_repo_url="https://github.com/opendilab/LightZero",
|
140 |
github_doc_model_url=None,
|
141 |
github_doc_env_url=None,
|
142 |
+
installation_guide='''
|
143 |
+
pip3 install DI-engine[common_env,video]
|
144 |
+
pip3 install LightZero
|
145 |
+
''',
|
146 |
usage_file_by_git_clone="./muzero/cartpole_muzero_deploy.py",
|
147 |
usage_file_by_huggingface_ding="./muzero/cartpole_muzero_download.py",
|
148 |
train_file="./muzero/cartpole_muzero.py",
|
149 |
repo_id="OpenDILabCommunity/CartPole-v0-MuZero",
|
150 |
+
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
|
151 |
+
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
|
152 |
create_repo=False
|
153 |
)
|
154 |
|
|
|
291 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/CartPole-v0-MuZero/blob/main/replay.mp4)
|
292 |
<!-- Provide the size information for the model. -->
|
293 |
- **Parameters total size:** 13548.13 KB
|
294 |
+
- **Last Update Date:** 2023-12-11
|
295 |
|
296 |
## Environments
|
297 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|