Omaratef3221
commited on
Commit
•
046d995
1
Parent(s):
e7bcd22
Upload folder using huggingface_hub
Browse files- CustomBertForMaskedLM.py +37 -0
- CustomRBFBert.py +28 -0
- RBFLayer.py +101 -0
- config.json +32 -0
- generation_config.json +5 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
CustomBertForMaskedLM.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertForMaskedLM
|
2 |
+
import torch.nn as nn
|
3 |
+
from RBFLayer import RBFLayer # Assuming RBFLayer is your custom RBF implementation
|
4 |
+
|
5 |
+
class CustomBertForMaskedLM(BertForMaskedLM):
|
6 |
+
def __init__(self, config):
|
7 |
+
super().__init__(config)
|
8 |
+
|
9 |
+
# Replace the feedforward MLP layers with RBF layers in BERT's encoder
|
10 |
+
for i, layer in enumerate(self.bert.encoder.layer):
|
11 |
+
in_features = 768
|
12 |
+
intermediate_features = 3072
|
13 |
+
|
14 |
+
# Replace the intermediate dense layer (768 -> 3072) with RBF
|
15 |
+
layer.intermediate.dense = RBFLayer(
|
16 |
+
in_features_dim=in_features,
|
17 |
+
num_kernels=2, # Number of kernels in the RBF layer
|
18 |
+
out_features_dim=intermediate_features,
|
19 |
+
radial_function=gaussian_rbf,
|
20 |
+
norm_function=euclidean_norm
|
21 |
+
)
|
22 |
+
|
23 |
+
# Replace the output dense layer (3072 -> 768) with RBF
|
24 |
+
layer.output.dense = RBFLayer(
|
25 |
+
in_features_dim=intermediate_features,
|
26 |
+
num_kernels=2,
|
27 |
+
out_features_dim=in_features,
|
28 |
+
radial_function=gaussian_rbf,
|
29 |
+
norm_function=euclidean_norm
|
30 |
+
)
|
31 |
+
|
32 |
+
# Define radial basis and norm functions
|
33 |
+
def gaussian_rbf(x):
|
34 |
+
return torch.exp(-x**2)
|
35 |
+
|
36 |
+
def euclidean_norm(x):
|
37 |
+
return torch.norm(x, p=2, dim=-1)
|
CustomRBFBert.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from RBFLayer import RBFLayer
|
5 |
+
|
6 |
+
def l_norm(x, p=2):
|
7 |
+
return torch.norm(x, p=p, dim=-1)
|
8 |
+
|
9 |
+
|
10 |
+
# Gaussian RBF
|
11 |
+
def rbf_gaussian(x):
|
12 |
+
return (-x.pow(2)).exp()
|
13 |
+
|
14 |
+
class CustomRBFFeedForward(nn.Module):
|
15 |
+
def __init__(self, in_features, out_features, num_kernels):
|
16 |
+
super(CustomRBFFeedForward, self).__init__()
|
17 |
+
# RBFLayer from the given implementation
|
18 |
+
self.rbf_layer = RBFLayer(
|
19 |
+
in_features_dim=in_features, # Input size (e.g., 896)
|
20 |
+
num_kernels=num_kernels, # Number of kernels in the RBF layer (can be tuned)
|
21 |
+
out_features_dim=out_features, # Output size (e.g., 4864)
|
22 |
+
radial_function=rbf_gaussian, # Use the Gaussian RBF
|
23 |
+
norm_function=l_norm # Use Euclidean norm
|
24 |
+
)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
# Apply the RBF layer to the input x
|
28 |
+
return self.rbf_layer(x)
|
RBFLayer.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
|
6 |
+
class RBFLayer(nn.Module):
|
7 |
+
def __init__(self,
|
8 |
+
in_features_dim: int,
|
9 |
+
num_kernels: int,
|
10 |
+
out_features_dim: int,
|
11 |
+
radial_function: Callable[[torch.Tensor], torch.Tensor],
|
12 |
+
norm_function: Callable[[torch.Tensor], torch.Tensor],
|
13 |
+
normalization: bool = True,
|
14 |
+
initial_shape_parameter: torch.Tensor = None,
|
15 |
+
initial_centers_parameter: torch.Tensor = None,
|
16 |
+
initial_weights_parameters: torch.Tensor = None,
|
17 |
+
constant_shape_parameter: bool = False,
|
18 |
+
constant_centers_parameter: bool = False,
|
19 |
+
constant_weights_parameters: bool = False):
|
20 |
+
super(RBFLayer, self).__init__()
|
21 |
+
|
22 |
+
self.in_features_dim = in_features_dim
|
23 |
+
self.num_kernels = num_kernels
|
24 |
+
self.out_features_dim = out_features_dim
|
25 |
+
self.radial_function = radial_function
|
26 |
+
self.norm_function = norm_function
|
27 |
+
self.normalization = normalization
|
28 |
+
|
29 |
+
self.initial_shape_parameter = initial_shape_parameter
|
30 |
+
self.constant_shape_parameter = constant_shape_parameter
|
31 |
+
|
32 |
+
self.initial_centers_parameter = initial_centers_parameter
|
33 |
+
self.constant_centers_parameter = constant_centers_parameter
|
34 |
+
|
35 |
+
self.initial_weights_parameters = initial_weights_parameters
|
36 |
+
self.constant_weights_parameters = constant_weights_parameters
|
37 |
+
|
38 |
+
self._make_parameters()
|
39 |
+
|
40 |
+
def _make_parameters(self) -> None:
|
41 |
+
# Initialize linear combination weights
|
42 |
+
if self.constant_weights_parameters:
|
43 |
+
self.weights = nn.Parameter(self.initial_weights_parameters, requires_grad=False)
|
44 |
+
else:
|
45 |
+
self.weights = nn.Parameter(torch.zeros(self.out_features_dim, self.num_kernels, dtype=torch.float32))
|
46 |
+
|
47 |
+
# Initialize kernels' centers
|
48 |
+
if self.constant_centers_parameter:
|
49 |
+
self.kernels_centers = nn.Parameter(self.initial_centers_parameter, requires_grad=False)
|
50 |
+
else:
|
51 |
+
self.kernels_centers = nn.Parameter(torch.zeros(self.num_kernels, self.in_features_dim, dtype=torch.float32))
|
52 |
+
|
53 |
+
# Initialize shape parameter
|
54 |
+
if self.constant_shape_parameter:
|
55 |
+
self.log_shapes = nn.Parameter(self.initial_shape_parameter, requires_grad=False)
|
56 |
+
else:
|
57 |
+
self.log_shapes = nn.Parameter(torch.zeros(self.num_kernels, dtype=torch.float32))
|
58 |
+
|
59 |
+
self.reset()
|
60 |
+
|
61 |
+
def reset(self, upper_bound_kernels: float = 1.0, std_shapes: float = 0.1, gain_weights: float = 1.0) -> None:
|
62 |
+
if self.initial_centers_parameter is None:
|
63 |
+
nn.init.uniform_(self.kernels_centers, a=-upper_bound_kernels, b=upper_bound_kernels)
|
64 |
+
|
65 |
+
if self.initial_shape_parameter is None:
|
66 |
+
nn.init.normal_(self.log_shapes, mean=0.0, std=std_shapes)
|
67 |
+
|
68 |
+
if self.initial_weights_parameters is None:
|
69 |
+
nn.init.xavier_uniform_(self.weights, gain=gain_weights)
|
70 |
+
|
71 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
72 |
+
"""
|
73 |
+
Computes the output of the RBF layer given an input tensor.
|
74 |
+
Input has size [batch_size, sequence_length, in_features].
|
75 |
+
"""
|
76 |
+
|
77 |
+
batch_size = input.size(0)
|
78 |
+
sequence_length = input.size(1)
|
79 |
+
|
80 |
+
# Expand centers to match the batch and sequence length
|
81 |
+
c = self.kernels_centers.expand(batch_size, sequence_length, self.num_kernels, self.in_features_dim)
|
82 |
+
|
83 |
+
# Compute differences between input and centers
|
84 |
+
diff = input.unsqueeze(2) - c # Shape: [batch_size, sequence_length, num_kernels, in_features_dim]
|
85 |
+
|
86 |
+
# Apply norm function to get distances
|
87 |
+
r = self.norm_function(diff) # Shape: [batch_size, sequence_length, num_kernels]
|
88 |
+
|
89 |
+
# Apply shape parameters (log_shapes) to the distances
|
90 |
+
eps_r = self.log_shapes.exp().unsqueeze(0).unsqueeze(0) * r
|
91 |
+
|
92 |
+
# Apply radial basis function (e.g., Gaussian)
|
93 |
+
rbfs = self.radial_function(eps_r)
|
94 |
+
|
95 |
+
if self.normalization:
|
96 |
+
rbfs = rbfs / (1e-9 + rbfs.sum(dim=-1, keepdim=True))
|
97 |
+
|
98 |
+
# Combine RBF outputs using the weights
|
99 |
+
out = (self.weights.unsqueeze(0).unsqueeze(0) * rbfs.unsqueeze(2)).sum(dim=-1)
|
100 |
+
|
101 |
+
return out
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google-bert/bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"CustomBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522,
|
26 |
+
|
27 |
+
"custom_layers": {
|
28 |
+
"use_rbf": true,
|
29 |
+
"rbf_num_kernels": 2,
|
30 |
+
"rbf_intermediate_size": 3072
|
31 |
+
}
|
32 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"pad_token_id": 0,
|
4 |
+
"transformers_version": "4.41.1"
|
5 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc47217a75b4c60c273e782fa8855e06a91fb8dcebf301378e149221462519cd
|
3 |
+
size 212145392
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|