File size: 1,787 Bytes
b970d87 4368e79 b970d87 4368e79 8fbe98e 4368e79 b970d87 4368e79 b970d87 8fbe98e c1b699f 8fbe98e c1b699f 8fbe98e c1b699f 8fbe98e c1b699f 8fbe98e b970d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
base_model: stable-diffusion-v1-5/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
datasets:
- gigant/oldbookillustrations
pipeline_tag: text-to-image
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - Oedon42/oldpainter-lora
These are LoRA adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were fine-tuned on the gigant/oldbookillustrations dataset. You can find some example images in the following.
## Intended uses & limitations
#### How to use
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe.load_lora_weights("Oedon42/oldpainter-lora")
prompt = "1800s, 19th century, antiquity, black & white, Croatia, Europe, ruins"
image = pipe(prompt).images[0]
```
## Model Preview
Here are some preview results of the model:
<div style="display: flex; flex-wrap: wrap;">
<div style="flex: 50%; padding: 1px;">
<img src="./image_0.png" alt="Preview 1" style="width: 90%;"/>
</div>
<div style="flex: 50%; padding: 1px;">
<img src="./image_1.png" alt="Preview 2" style="width: 90%;"/>
</div>
<div style="flex: 50%; padding: 1px;">
<img src="./image_2.png" alt="Preview 3" style="width: 90%;"/>
</div>
<div style="flex: 50%; padding: 1px;">
<img src="./image_3.png" alt="Preview 4" style="width: 90%;"/>
</div>
</div>
## Training details
[TODO: describe the data used to train the model] |