Observer commited on
Commit
9616395
1 Parent(s): 85b6bf3
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.1755684873563876,
4
+ "train_runtime": 47161.9361,
5
+ "train_samples": 85997,
6
+ "train_samples_per_second": 1.823,
7
+ "train_steps_per_second": 0.014
8
+ }
config.json ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/data/jcy/ckpt/internvl-chat-v1-5",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "llm_config": {
16
+ "_name_or_path": "internlm/internlm2-chat-20b",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "InternLM2ForCausalLM"
20
+ ],
21
+ "attn_implementation": "flash_attention_2",
22
+ "auto_map": {
23
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
24
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
25
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
26
+ },
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bias": false,
30
+ "bos_token_id": 1,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 2,
39
+ "exponential_decay_length_penalty": null,
40
+ "finetuning_task": null,
41
+ "forced_bos_token_id": null,
42
+ "forced_eos_token_id": null,
43
+ "hidden_act": "silu",
44
+ "hidden_size": 6144,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "initializer_range": 0.02,
50
+ "intermediate_size": 16384,
51
+ "is_decoder": false,
52
+ "is_encoder_decoder": false,
53
+ "label2id": {
54
+ "LABEL_0": 0,
55
+ "LABEL_1": 1
56
+ },
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 32768,
60
+ "min_length": 0,
61
+ "model_type": "internlm2",
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 48,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 48,
67
+ "num_key_value_heads": 8,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 2,
73
+ "prefix": null,
74
+ "problem_type": null,
75
+ "pruned_heads": {},
76
+ "remove_invalid_values": false,
77
+ "repetition_penalty": 1.0,
78
+ "return_dict": true,
79
+ "return_dict_in_generate": false,
80
+ "rms_norm_eps": 1e-05,
81
+ "rope_scaling": {
82
+ "factor": 3.0,
83
+ "type": "dynamic"
84
+ },
85
+ "rope_theta": 1000000,
86
+ "sep_token_id": null,
87
+ "suppress_tokens": null,
88
+ "task_specific_params": null,
89
+ "temperature": 1.0,
90
+ "tf_legacy_loss": false,
91
+ "tie_encoder_decoder": false,
92
+ "tie_word_embeddings": false,
93
+ "tokenizer_class": null,
94
+ "top_k": 50,
95
+ "top_p": 1.0,
96
+ "torch_dtype": "bfloat16",
97
+ "torchscript": false,
98
+ "transformers_version": "4.37.2",
99
+ "typical_p": 1.0,
100
+ "use_bfloat16": true,
101
+ "use_cache": false,
102
+ "vocab_size": 92553
103
+ },
104
+ "max_dynamic_patch": 12,
105
+ "min_dynamic_patch": 1,
106
+ "model_type": "internvl_chat",
107
+ "pad2square": false,
108
+ "ps_version": "v2",
109
+ "select_layer": -1,
110
+ "system_message": "You are an AI assistant whose name is InternLM (\u4e66\u751f\u00b7\u6d66\u8bed).",
111
+ "template": "internlm2-chat",
112
+ "torch_dtype": "bfloat16",
113
+ "transformers_version": null,
114
+ "use_backbone_lora": 0,
115
+ "use_llm_lora": 0,
116
+ "use_thumbnail": true,
117
+ "vision_config": {
118
+ "_name_or_path": "",
119
+ "add_cross_attention": false,
120
+ "architectures": [
121
+ "InternVisionModel"
122
+ ],
123
+ "attention_dropout": 0.0,
124
+ "bad_words_ids": null,
125
+ "begin_suppress_tokens": null,
126
+ "bos_token_id": null,
127
+ "chunk_size_feed_forward": 0,
128
+ "cross_attention_hidden_size": null,
129
+ "decoder_start_token_id": null,
130
+ "diversity_penalty": 0.0,
131
+ "do_sample": false,
132
+ "drop_path_rate": 0.4,
133
+ "dropout": 0.0,
134
+ "early_stopping": false,
135
+ "encoder_no_repeat_ngram_size": 0,
136
+ "eos_token_id": null,
137
+ "exponential_decay_length_penalty": null,
138
+ "finetuning_task": null,
139
+ "forced_bos_token_id": null,
140
+ "forced_eos_token_id": null,
141
+ "hidden_act": "gelu",
142
+ "hidden_size": 3200,
143
+ "id2label": {
144
+ "0": "LABEL_0",
145
+ "1": "LABEL_1"
146
+ },
147
+ "image_size": 448,
148
+ "initializer_factor": 0.1,
149
+ "initializer_range": 1e-10,
150
+ "intermediate_size": 12800,
151
+ "is_decoder": false,
152
+ "is_encoder_decoder": false,
153
+ "label2id": {
154
+ "LABEL_0": 0,
155
+ "LABEL_1": 1
156
+ },
157
+ "layer_norm_eps": 1e-06,
158
+ "length_penalty": 1.0,
159
+ "max_length": 20,
160
+ "min_length": 0,
161
+ "model_type": "intern_vit_6b",
162
+ "no_repeat_ngram_size": 0,
163
+ "norm_type": "rms_norm",
164
+ "num_attention_heads": 25,
165
+ "num_beam_groups": 1,
166
+ "num_beams": 1,
167
+ "num_channels": 3,
168
+ "num_hidden_layers": 45,
169
+ "num_return_sequences": 1,
170
+ "output_attentions": false,
171
+ "output_hidden_states": false,
172
+ "output_scores": false,
173
+ "pad_token_id": null,
174
+ "patch_size": 14,
175
+ "prefix": null,
176
+ "problem_type": null,
177
+ "pruned_heads": {},
178
+ "qk_normalization": true,
179
+ "qkv_bias": false,
180
+ "remove_invalid_values": false,
181
+ "repetition_penalty": 1.0,
182
+ "return_dict": true,
183
+ "return_dict_in_generate": false,
184
+ "sep_token_id": null,
185
+ "suppress_tokens": null,
186
+ "task_specific_params": null,
187
+ "temperature": 1.0,
188
+ "tf_legacy_loss": false,
189
+ "tie_encoder_decoder": false,
190
+ "tie_word_embeddings": true,
191
+ "tokenizer_class": null,
192
+ "top_k": 50,
193
+ "top_p": 1.0,
194
+ "torch_dtype": "bfloat16",
195
+ "torchscript": false,
196
+ "transformers_version": "4.37.2",
197
+ "typical_p": 1.0,
198
+ "use_bfloat16": true,
199
+ "use_flash_attn": true
200
+ }
201
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
53
+ self.llm_config = InternLM2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
conversation.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ register_conv_template(
334
+ Conversation(
335
+ name='Hermes-2',
336
+ system_template='<|im_start|>system\n{system_message}',
337
+ system_message='Answer the questions.',
338
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
339
+ sep_style=SeparatorStyle.MPT,
340
+ sep='<|im_end|>',
341
+ stop_token_ids=[
342
+ 2,
343
+ 6,
344
+ 7,
345
+ 8,
346
+ ],
347
+ stop_str='<|endoftext|>',
348
+ )
349
+ )
350
+
351
+
352
+ register_conv_template(
353
+ Conversation(
354
+ name='internlm2-chat',
355
+ system_template='<|im_start|>system\n{system_message}',
356
+ system_message='You are an AI assistant whose name is InternLM (书生·浦语).',
357
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
358
+ sep_style=SeparatorStyle.MPT,
359
+ sep='<|im_end|>',
360
+ stop_token_ids=[
361
+ 2,
362
+ 92543,
363
+ 92542
364
+ ]
365
+ )
366
+ )
367
+
368
+
369
+ register_conv_template(
370
+ Conversation(
371
+ name='phi3-chat',
372
+ system_template='<|system|>\n{system_message}',
373
+ system_message='You are an AI assistant whose name is Phi-3.',
374
+ roles=('<|user|>\n', '<|assistant|>\n'),
375
+ sep_style=SeparatorStyle.MPT,
376
+ sep='<|end|>',
377
+ stop_token_ids=[
378
+ 2,
379
+ 32000,
380
+ 32007
381
+ ]
382
+ )
383
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
model-00001-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71da14ff2afb6a4d98042027f17e541edc57aad359b59597b1f5848934f5e609
3
+ size 4988569440
model-00002-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291ea6a5037584d76aa28d97f941ce4ca3a6f48b6ac01101d6468d8248fd31cf
3
+ size 4937253584
model-00003-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b69ebce7afabc0e4a7270dd821f7ff1cdd0bccebc247dfedf23ccea4d67201db
3
+ size 4801189400
model-00004-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad041f73cb40eab2f6d1b6751d1f4744e40557eeeb5b13016ec27d71466c7944
3
+ size 4882322840
model-00005-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13621c3845cb85a0d815ab30a883597ad6f4f215525b2fd2b54284254fe9f336
3
+ size 4882322880
model-00006-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:414b0b5a8400db260ef25592edc1b50aa01efae7a22155bd74bd192fcbaacc29
3
+ size 4983011128
model-00007-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6fa96cf6e026052de3dd6df99e9cb2a0de6f3683c6ff250878de1ea251ea10c
3
+ size 4957820488
model-00008-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216d57683ad508d8966b5c2df975eabcbc439e746b73a33f66d36846b8a304e6
3
+ size 4882322880
model-00009-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:517d5257c7011b45b4af7a7918307f5aae19af75b809caa838e241a657340224
3
+ size 4983011128
model-00010-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f93cc2db3da50790e894d1b29daa2d24f2c55b1b27e8e3dc7d0c33bb2d89de31
3
+ size 4957820488
model-00011-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dfc70d01dfde06e48c5d5d819d1772aa63c3b2c1e2ba14611eac8f62b72594a
3
+ size 1772842232
model.safetensors.index.json ADDED
@@ -0,0 +1,941 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 51028372224
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.layers.0.attention.wo.weight": "model-00003-of-00011.safetensors",
7
+ "language_model.model.layers.0.attention.wqkv.weight": "model-00003-of-00011.safetensors",
8
+ "language_model.model.layers.0.attention_norm.weight": "model-00003-of-00011.safetensors",
9
+ "language_model.model.layers.0.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
10
+ "language_model.model.layers.0.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
11
+ "language_model.model.layers.0.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
12
+ "language_model.model.layers.0.ffn_norm.weight": "model-00003-of-00011.safetensors",
13
+ "language_model.model.layers.1.attention.wo.weight": "model-00003-of-00011.safetensors",
14
+ "language_model.model.layers.1.attention.wqkv.weight": "model-00003-of-00011.safetensors",
15
+ "language_model.model.layers.1.attention_norm.weight": "model-00003-of-00011.safetensors",
16
+ "language_model.model.layers.1.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
17
+ "language_model.model.layers.1.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
18
+ "language_model.model.layers.1.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
19
+ "language_model.model.layers.1.ffn_norm.weight": "model-00003-of-00011.safetensors",
20
+ "language_model.model.layers.10.attention.wo.weight": "model-00005-of-00011.safetensors",
21
+ "language_model.model.layers.10.attention.wqkv.weight": "model-00005-of-00011.safetensors",
22
+ "language_model.model.layers.10.attention_norm.weight": "model-00005-of-00011.safetensors",
23
+ "language_model.model.layers.10.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
24
+ "language_model.model.layers.10.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
25
+ "language_model.model.layers.10.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
26
+ "language_model.model.layers.10.ffn_norm.weight": "model-00005-of-00011.safetensors",
27
+ "language_model.model.layers.11.attention.wo.weight": "model-00005-of-00011.safetensors",
28
+ "language_model.model.layers.11.attention.wqkv.weight": "model-00005-of-00011.safetensors",
29
+ "language_model.model.layers.11.attention_norm.weight": "model-00005-of-00011.safetensors",
30
+ "language_model.model.layers.11.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
31
+ "language_model.model.layers.11.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
32
+ "language_model.model.layers.11.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
33
+ "language_model.model.layers.11.ffn_norm.weight": "model-00005-of-00011.safetensors",
34
+ "language_model.model.layers.12.attention.wo.weight": "model-00005-of-00011.safetensors",
35
+ "language_model.model.layers.12.attention.wqkv.weight": "model-00005-of-00011.safetensors",
36
+ "language_model.model.layers.12.attention_norm.weight": "model-00005-of-00011.safetensors",
37
+ "language_model.model.layers.12.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
38
+ "language_model.model.layers.12.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
39
+ "language_model.model.layers.12.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
40
+ "language_model.model.layers.12.ffn_norm.weight": "model-00005-of-00011.safetensors",
41
+ "language_model.model.layers.13.attention.wo.weight": "model-00005-of-00011.safetensors",
42
+ "language_model.model.layers.13.attention.wqkv.weight": "model-00005-of-00011.safetensors",
43
+ "language_model.model.layers.13.attention_norm.weight": "model-00005-of-00011.safetensors",
44
+ "language_model.model.layers.13.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
45
+ "language_model.model.layers.13.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
46
+ "language_model.model.layers.13.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
47
+ "language_model.model.layers.13.ffn_norm.weight": "model-00005-of-00011.safetensors",
48
+ "language_model.model.layers.14.attention.wo.weight": "model-00005-of-00011.safetensors",
49
+ "language_model.model.layers.14.attention.wqkv.weight": "model-00005-of-00011.safetensors",
50
+ "language_model.model.layers.14.attention_norm.weight": "model-00005-of-00011.safetensors",
51
+ "language_model.model.layers.14.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
52
+ "language_model.model.layers.14.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
53
+ "language_model.model.layers.14.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
54
+ "language_model.model.layers.14.ffn_norm.weight": "model-00005-of-00011.safetensors",
55
+ "language_model.model.layers.15.attention.wo.weight": "model-00005-of-00011.safetensors",
56
+ "language_model.model.layers.15.attention.wqkv.weight": "model-00005-of-00011.safetensors",
57
+ "language_model.model.layers.15.attention_norm.weight": "model-00006-of-00011.safetensors",
58
+ "language_model.model.layers.15.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
59
+ "language_model.model.layers.15.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
60
+ "language_model.model.layers.15.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
61
+ "language_model.model.layers.15.ffn_norm.weight": "model-00006-of-00011.safetensors",
62
+ "language_model.model.layers.16.attention.wo.weight": "model-00006-of-00011.safetensors",
63
+ "language_model.model.layers.16.attention.wqkv.weight": "model-00006-of-00011.safetensors",
64
+ "language_model.model.layers.16.attention_norm.weight": "model-00006-of-00011.safetensors",
65
+ "language_model.model.layers.16.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
66
+ "language_model.model.layers.16.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
67
+ "language_model.model.layers.16.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
68
+ "language_model.model.layers.16.ffn_norm.weight": "model-00006-of-00011.safetensors",
69
+ "language_model.model.layers.17.attention.wo.weight": "model-00006-of-00011.safetensors",
70
+ "language_model.model.layers.17.attention.wqkv.weight": "model-00006-of-00011.safetensors",
71
+ "language_model.model.layers.17.attention_norm.weight": "model-00006-of-00011.safetensors",
72
+ "language_model.model.layers.17.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
73
+ "language_model.model.layers.17.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
74
+ "language_model.model.layers.17.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
75
+ "language_model.model.layers.17.ffn_norm.weight": "model-00006-of-00011.safetensors",
76
+ "language_model.model.layers.18.attention.wo.weight": "model-00006-of-00011.safetensors",
77
+ "language_model.model.layers.18.attention.wqkv.weight": "model-00006-of-00011.safetensors",
78
+ "language_model.model.layers.18.attention_norm.weight": "model-00006-of-00011.safetensors",
79
+ "language_model.model.layers.18.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
80
+ "language_model.model.layers.18.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
81
+ "language_model.model.layers.18.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
82
+ "language_model.model.layers.18.ffn_norm.weight": "model-00006-of-00011.safetensors",
83
+ "language_model.model.layers.19.attention.wo.weight": "model-00006-of-00011.safetensors",
84
+ "language_model.model.layers.19.attention.wqkv.weight": "model-00006-of-00011.safetensors",
85
+ "language_model.model.layers.19.attention_norm.weight": "model-00006-of-00011.safetensors",
86
+ "language_model.model.layers.19.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
87
+ "language_model.model.layers.19.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
88
+ "language_model.model.layers.19.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
89
+ "language_model.model.layers.19.ffn_norm.weight": "model-00006-of-00011.safetensors",
90
+ "language_model.model.layers.2.attention.wo.weight": "model-00003-of-00011.safetensors",
91
+ "language_model.model.layers.2.attention.wqkv.weight": "model-00003-of-00011.safetensors",
92
+ "language_model.model.layers.2.attention_norm.weight": "model-00003-of-00011.safetensors",
93
+ "language_model.model.layers.2.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
94
+ "language_model.model.layers.2.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
95
+ "language_model.model.layers.2.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
96
+ "language_model.model.layers.2.ffn_norm.weight": "model-00003-of-00011.safetensors",
97
+ "language_model.model.layers.20.attention.wo.weight": "model-00006-of-00011.safetensors",
98
+ "language_model.model.layers.20.attention.wqkv.weight": "model-00006-of-00011.safetensors",
99
+ "language_model.model.layers.20.attention_norm.weight": "model-00006-of-00011.safetensors",
100
+ "language_model.model.layers.20.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
101
+ "language_model.model.layers.20.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
102
+ "language_model.model.layers.20.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
103
+ "language_model.model.layers.20.ffn_norm.weight": "model-00006-of-00011.safetensors",
104
+ "language_model.model.layers.21.attention.wo.weight": "model-00006-of-00011.safetensors",
105
+ "language_model.model.layers.21.attention.wqkv.weight": "model-00006-of-00011.safetensors",
106
+ "language_model.model.layers.21.attention_norm.weight": "model-00006-of-00011.safetensors",
107
+ "language_model.model.layers.21.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
108
+ "language_model.model.layers.21.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
109
+ "language_model.model.layers.21.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
110
+ "language_model.model.layers.21.ffn_norm.weight": "model-00006-of-00011.safetensors",
111
+ "language_model.model.layers.22.attention.wo.weight": "model-00007-of-00011.safetensors",
112
+ "language_model.model.layers.22.attention.wqkv.weight": "model-00006-of-00011.safetensors",
113
+ "language_model.model.layers.22.attention_norm.weight": "model-00007-of-00011.safetensors",
114
+ "language_model.model.layers.22.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
115
+ "language_model.model.layers.22.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
116
+ "language_model.model.layers.22.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
117
+ "language_model.model.layers.22.ffn_norm.weight": "model-00007-of-00011.safetensors",
118
+ "language_model.model.layers.23.attention.wo.weight": "model-00007-of-00011.safetensors",
119
+ "language_model.model.layers.23.attention.wqkv.weight": "model-00007-of-00011.safetensors",
120
+ "language_model.model.layers.23.attention_norm.weight": "model-00007-of-00011.safetensors",
121
+ "language_model.model.layers.23.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
122
+ "language_model.model.layers.23.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
123
+ "language_model.model.layers.23.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
124
+ "language_model.model.layers.23.ffn_norm.weight": "model-00007-of-00011.safetensors",
125
+ "language_model.model.layers.24.attention.wo.weight": "model-00007-of-00011.safetensors",
126
+ "language_model.model.layers.24.attention.wqkv.weight": "model-00007-of-00011.safetensors",
127
+ "language_model.model.layers.24.attention_norm.weight": "model-00007-of-00011.safetensors",
128
+ "language_model.model.layers.24.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
129
+ "language_model.model.layers.24.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
130
+ "language_model.model.layers.24.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
131
+ "language_model.model.layers.24.ffn_norm.weight": "model-00007-of-00011.safetensors",
132
+ "language_model.model.layers.25.attention.wo.weight": "model-00007-of-00011.safetensors",
133
+ "language_model.model.layers.25.attention.wqkv.weight": "model-00007-of-00011.safetensors",
134
+ "language_model.model.layers.25.attention_norm.weight": "model-00007-of-00011.safetensors",
135
+ "language_model.model.layers.25.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
136
+ "language_model.model.layers.25.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
137
+ "language_model.model.layers.25.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
138
+ "language_model.model.layers.25.ffn_norm.weight": "model-00007-of-00011.safetensors",
139
+ "language_model.model.layers.26.attention.wo.weight": "model-00007-of-00011.safetensors",
140
+ "language_model.model.layers.26.attention.wqkv.weight": "model-00007-of-00011.safetensors",
141
+ "language_model.model.layers.26.attention_norm.weight": "model-00007-of-00011.safetensors",
142
+ "language_model.model.layers.26.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
143
+ "language_model.model.layers.26.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
144
+ "language_model.model.layers.26.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
145
+ "language_model.model.layers.26.ffn_norm.weight": "model-00007-of-00011.safetensors",
146
+ "language_model.model.layers.27.attention.wo.weight": "model-00007-of-00011.safetensors",
147
+ "language_model.model.layers.27.attention.wqkv.weight": "model-00007-of-00011.safetensors",
148
+ "language_model.model.layers.27.attention_norm.weight": "model-00007-of-00011.safetensors",
149
+ "language_model.model.layers.27.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
150
+ "language_model.model.layers.27.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
151
+ "language_model.model.layers.27.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
152
+ "language_model.model.layers.27.ffn_norm.weight": "model-00007-of-00011.safetensors",
153
+ "language_model.model.layers.28.attention.wo.weight": "model-00007-of-00011.safetensors",
154
+ "language_model.model.layers.28.attention.wqkv.weight": "model-00007-of-00011.safetensors",
155
+ "language_model.model.layers.28.attention_norm.weight": "model-00008-of-00011.safetensors",
156
+ "language_model.model.layers.28.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
157
+ "language_model.model.layers.28.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
158
+ "language_model.model.layers.28.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
159
+ "language_model.model.layers.28.ffn_norm.weight": "model-00008-of-00011.safetensors",
160
+ "language_model.model.layers.29.attention.wo.weight": "model-00008-of-00011.safetensors",
161
+ "language_model.model.layers.29.attention.wqkv.weight": "model-00008-of-00011.safetensors",
162
+ "language_model.model.layers.29.attention_norm.weight": "model-00008-of-00011.safetensors",
163
+ "language_model.model.layers.29.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
164
+ "language_model.model.layers.29.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
165
+ "language_model.model.layers.29.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
166
+ "language_model.model.layers.29.ffn_norm.weight": "model-00008-of-00011.safetensors",
167
+ "language_model.model.layers.3.attention.wo.weight": "model-00003-of-00011.safetensors",
168
+ "language_model.model.layers.3.attention.wqkv.weight": "model-00003-of-00011.safetensors",
169
+ "language_model.model.layers.3.attention_norm.weight": "model-00004-of-00011.safetensors",
170
+ "language_model.model.layers.3.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
171
+ "language_model.model.layers.3.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
172
+ "language_model.model.layers.3.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
173
+ "language_model.model.layers.3.ffn_norm.weight": "model-00004-of-00011.safetensors",
174
+ "language_model.model.layers.30.attention.wo.weight": "model-00008-of-00011.safetensors",
175
+ "language_model.model.layers.30.attention.wqkv.weight": "model-00008-of-00011.safetensors",
176
+ "language_model.model.layers.30.attention_norm.weight": "model-00008-of-00011.safetensors",
177
+ "language_model.model.layers.30.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
178
+ "language_model.model.layers.30.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
179
+ "language_model.model.layers.30.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
180
+ "language_model.model.layers.30.ffn_norm.weight": "model-00008-of-00011.safetensors",
181
+ "language_model.model.layers.31.attention.wo.weight": "model-00008-of-00011.safetensors",
182
+ "language_model.model.layers.31.attention.wqkv.weight": "model-00008-of-00011.safetensors",
183
+ "language_model.model.layers.31.attention_norm.weight": "model-00008-of-00011.safetensors",
184
+ "language_model.model.layers.31.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
185
+ "language_model.model.layers.31.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
186
+ "language_model.model.layers.31.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
187
+ "language_model.model.layers.31.ffn_norm.weight": "model-00008-of-00011.safetensors",
188
+ "language_model.model.layers.32.attention.wo.weight": "model-00008-of-00011.safetensors",
189
+ "language_model.model.layers.32.attention.wqkv.weight": "model-00008-of-00011.safetensors",
190
+ "language_model.model.layers.32.attention_norm.weight": "model-00008-of-00011.safetensors",
191
+ "language_model.model.layers.32.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
192
+ "language_model.model.layers.32.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
193
+ "language_model.model.layers.32.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
194
+ "language_model.model.layers.32.ffn_norm.weight": "model-00008-of-00011.safetensors",
195
+ "language_model.model.layers.33.attention.wo.weight": "model-00008-of-00011.safetensors",
196
+ "language_model.model.layers.33.attention.wqkv.weight": "model-00008-of-00011.safetensors",
197
+ "language_model.model.layers.33.attention_norm.weight": "model-00008-of-00011.safetensors",
198
+ "language_model.model.layers.33.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
199
+ "language_model.model.layers.33.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
200
+ "language_model.model.layers.33.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
201
+ "language_model.model.layers.33.ffn_norm.weight": "model-00008-of-00011.safetensors",
202
+ "language_model.model.layers.34.attention.wo.weight": "model-00008-of-00011.safetensors",
203
+ "language_model.model.layers.34.attention.wqkv.weight": "model-00008-of-00011.safetensors",
204
+ "language_model.model.layers.34.attention_norm.weight": "model-00009-of-00011.safetensors",
205
+ "language_model.model.layers.34.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
206
+ "language_model.model.layers.34.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
207
+ "language_model.model.layers.34.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
208
+ "language_model.model.layers.34.ffn_norm.weight": "model-00009-of-00011.safetensors",
209
+ "language_model.model.layers.35.attention.wo.weight": "model-00009-of-00011.safetensors",
210
+ "language_model.model.layers.35.attention.wqkv.weight": "model-00009-of-00011.safetensors",
211
+ "language_model.model.layers.35.attention_norm.weight": "model-00009-of-00011.safetensors",
212
+ "language_model.model.layers.35.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
213
+ "language_model.model.layers.35.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
214
+ "language_model.model.layers.35.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
215
+ "language_model.model.layers.35.ffn_norm.weight": "model-00009-of-00011.safetensors",
216
+ "language_model.model.layers.36.attention.wo.weight": "model-00009-of-00011.safetensors",
217
+ "language_model.model.layers.36.attention.wqkv.weight": "model-00009-of-00011.safetensors",
218
+ "language_model.model.layers.36.attention_norm.weight": "model-00009-of-00011.safetensors",
219
+ "language_model.model.layers.36.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
220
+ "language_model.model.layers.36.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
221
+ "language_model.model.layers.36.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
222
+ "language_model.model.layers.36.ffn_norm.weight": "model-00009-of-00011.safetensors",
223
+ "language_model.model.layers.37.attention.wo.weight": "model-00009-of-00011.safetensors",
224
+ "language_model.model.layers.37.attention.wqkv.weight": "model-00009-of-00011.safetensors",
225
+ "language_model.model.layers.37.attention_norm.weight": "model-00009-of-00011.safetensors",
226
+ "language_model.model.layers.37.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
227
+ "language_model.model.layers.37.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
228
+ "language_model.model.layers.37.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
229
+ "language_model.model.layers.37.ffn_norm.weight": "model-00009-of-00011.safetensors",
230
+ "language_model.model.layers.38.attention.wo.weight": "model-00009-of-00011.safetensors",
231
+ "language_model.model.layers.38.attention.wqkv.weight": "model-00009-of-00011.safetensors",
232
+ "language_model.model.layers.38.attention_norm.weight": "model-00009-of-00011.safetensors",
233
+ "language_model.model.layers.38.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
234
+ "language_model.model.layers.38.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
235
+ "language_model.model.layers.38.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
236
+ "language_model.model.layers.38.ffn_norm.weight": "model-00009-of-00011.safetensors",
237
+ "language_model.model.layers.39.attention.wo.weight": "model-00009-of-00011.safetensors",
238
+ "language_model.model.layers.39.attention.wqkv.weight": "model-00009-of-00011.safetensors",
239
+ "language_model.model.layers.39.attention_norm.weight": "model-00009-of-00011.safetensors",
240
+ "language_model.model.layers.39.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
241
+ "language_model.model.layers.39.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
242
+ "language_model.model.layers.39.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
243
+ "language_model.model.layers.39.ffn_norm.weight": "model-00009-of-00011.safetensors",
244
+ "language_model.model.layers.4.attention.wo.weight": "model-00004-of-00011.safetensors",
245
+ "language_model.model.layers.4.attention.wqkv.weight": "model-00004-of-00011.safetensors",
246
+ "language_model.model.layers.4.attention_norm.weight": "model-00004-of-00011.safetensors",
247
+ "language_model.model.layers.4.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
248
+ "language_model.model.layers.4.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
249
+ "language_model.model.layers.4.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
250
+ "language_model.model.layers.4.ffn_norm.weight": "model-00004-of-00011.safetensors",
251
+ "language_model.model.layers.40.attention.wo.weight": "model-00009-of-00011.safetensors",
252
+ "language_model.model.layers.40.attention.wqkv.weight": "model-00009-of-00011.safetensors",
253
+ "language_model.model.layers.40.attention_norm.weight": "model-00009-of-00011.safetensors",
254
+ "language_model.model.layers.40.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
255
+ "language_model.model.layers.40.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
256
+ "language_model.model.layers.40.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
257
+ "language_model.model.layers.40.ffn_norm.weight": "model-00009-of-00011.safetensors",
258
+ "language_model.model.layers.41.attention.wo.weight": "model-00010-of-00011.safetensors",
259
+ "language_model.model.layers.41.attention.wqkv.weight": "model-00009-of-00011.safetensors",
260
+ "language_model.model.layers.41.attention_norm.weight": "model-00010-of-00011.safetensors",
261
+ "language_model.model.layers.41.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
262
+ "language_model.model.layers.41.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
263
+ "language_model.model.layers.41.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
264
+ "language_model.model.layers.41.ffn_norm.weight": "model-00010-of-00011.safetensors",
265
+ "language_model.model.layers.42.attention.wo.weight": "model-00010-of-00011.safetensors",
266
+ "language_model.model.layers.42.attention.wqkv.weight": "model-00010-of-00011.safetensors",
267
+ "language_model.model.layers.42.attention_norm.weight": "model-00010-of-00011.safetensors",
268
+ "language_model.model.layers.42.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
269
+ "language_model.model.layers.42.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
270
+ "language_model.model.layers.42.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
271
+ "language_model.model.layers.42.ffn_norm.weight": "model-00010-of-00011.safetensors",
272
+ "language_model.model.layers.43.attention.wo.weight": "model-00010-of-00011.safetensors",
273
+ "language_model.model.layers.43.attention.wqkv.weight": "model-00010-of-00011.safetensors",
274
+ "language_model.model.layers.43.attention_norm.weight": "model-00010-of-00011.safetensors",
275
+ "language_model.model.layers.43.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
276
+ "language_model.model.layers.43.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
277
+ "language_model.model.layers.43.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
278
+ "language_model.model.layers.43.ffn_norm.weight": "model-00010-of-00011.safetensors",
279
+ "language_model.model.layers.44.attention.wo.weight": "model-00010-of-00011.safetensors",
280
+ "language_model.model.layers.44.attention.wqkv.weight": "model-00010-of-00011.safetensors",
281
+ "language_model.model.layers.44.attention_norm.weight": "model-00010-of-00011.safetensors",
282
+ "language_model.model.layers.44.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
283
+ "language_model.model.layers.44.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
284
+ "language_model.model.layers.44.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
285
+ "language_model.model.layers.44.ffn_norm.weight": "model-00010-of-00011.safetensors",
286
+ "language_model.model.layers.45.attention.wo.weight": "model-00010-of-00011.safetensors",
287
+ "language_model.model.layers.45.attention.wqkv.weight": "model-00010-of-00011.safetensors",
288
+ "language_model.model.layers.45.attention_norm.weight": "model-00010-of-00011.safetensors",
289
+ "language_model.model.layers.45.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
290
+ "language_model.model.layers.45.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
291
+ "language_model.model.layers.45.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
292
+ "language_model.model.layers.45.ffn_norm.weight": "model-00010-of-00011.safetensors",
293
+ "language_model.model.layers.46.attention.wo.weight": "model-00010-of-00011.safetensors",
294
+ "language_model.model.layers.46.attention.wqkv.weight": "model-00010-of-00011.safetensors",
295
+ "language_model.model.layers.46.attention_norm.weight": "model-00010-of-00011.safetensors",
296
+ "language_model.model.layers.46.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
297
+ "language_model.model.layers.46.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
298
+ "language_model.model.layers.46.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
299
+ "language_model.model.layers.46.ffn_norm.weight": "model-00010-of-00011.safetensors",
300
+ "language_model.model.layers.47.attention.wo.weight": "model-00010-of-00011.safetensors",
301
+ "language_model.model.layers.47.attention.wqkv.weight": "model-00010-of-00011.safetensors",
302
+ "language_model.model.layers.47.attention_norm.weight": "model-00011-of-00011.safetensors",
303
+ "language_model.model.layers.47.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
304
+ "language_model.model.layers.47.feed_forward.w2.weight": "model-00011-of-00011.safetensors",
305
+ "language_model.model.layers.47.feed_forward.w3.weight": "model-00011-of-00011.safetensors",
306
+ "language_model.model.layers.47.ffn_norm.weight": "model-00011-of-00011.safetensors",
307
+ "language_model.model.layers.5.attention.wo.weight": "model-00004-of-00011.safetensors",
308
+ "language_model.model.layers.5.attention.wqkv.weight": "model-00004-of-00011.safetensors",
309
+ "language_model.model.layers.5.attention_norm.weight": "model-00004-of-00011.safetensors",
310
+ "language_model.model.layers.5.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
311
+ "language_model.model.layers.5.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
312
+ "language_model.model.layers.5.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
313
+ "language_model.model.layers.5.ffn_norm.weight": "model-00004-of-00011.safetensors",
314
+ "language_model.model.layers.6.attention.wo.weight": "model-00004-of-00011.safetensors",
315
+ "language_model.model.layers.6.attention.wqkv.weight": "model-00004-of-00011.safetensors",
316
+ "language_model.model.layers.6.attention_norm.weight": "model-00004-of-00011.safetensors",
317
+ "language_model.model.layers.6.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
318
+ "language_model.model.layers.6.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
319
+ "language_model.model.layers.6.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
320
+ "language_model.model.layers.6.ffn_norm.weight": "model-00004-of-00011.safetensors",
321
+ "language_model.model.layers.7.attention.wo.weight": "model-00004-of-00011.safetensors",
322
+ "language_model.model.layers.7.attention.wqkv.weight": "model-00004-of-00011.safetensors",
323
+ "language_model.model.layers.7.attention_norm.weight": "model-00004-of-00011.safetensors",
324
+ "language_model.model.layers.7.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
325
+ "language_model.model.layers.7.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
326
+ "language_model.model.layers.7.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
327
+ "language_model.model.layers.7.ffn_norm.weight": "model-00004-of-00011.safetensors",
328
+ "language_model.model.layers.8.attention.wo.weight": "model-00004-of-00011.safetensors",
329
+ "language_model.model.layers.8.attention.wqkv.weight": "model-00004-of-00011.safetensors",
330
+ "language_model.model.layers.8.attention_norm.weight": "model-00004-of-00011.safetensors",
331
+ "language_model.model.layers.8.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
332
+ "language_model.model.layers.8.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
333
+ "language_model.model.layers.8.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
334
+ "language_model.model.layers.8.ffn_norm.weight": "model-00004-of-00011.safetensors",
335
+ "language_model.model.layers.9.attention.wo.weight": "model-00004-of-00011.safetensors",
336
+ "language_model.model.layers.9.attention.wqkv.weight": "model-00004-of-00011.safetensors",
337
+ "language_model.model.layers.9.attention_norm.weight": "model-00005-of-00011.safetensors",
338
+ "language_model.model.layers.9.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
339
+ "language_model.model.layers.9.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
340
+ "language_model.model.layers.9.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
341
+ "language_model.model.layers.9.ffn_norm.weight": "model-00005-of-00011.safetensors",
342
+ "language_model.model.norm.weight": "model-00011-of-00011.safetensors",
343
+ "language_model.model.tok_embeddings.weight": "model-00003-of-00011.safetensors",
344
+ "language_model.output.weight": "model-00011-of-00011.safetensors",
345
+ "mlp1.0.bias": "model-00011-of-00011.safetensors",
346
+ "mlp1.0.weight": "model-00011-of-00011.safetensors",
347
+ "mlp1.1.bias": "model-00011-of-00011.safetensors",
348
+ "mlp1.1.weight": "model-00011-of-00011.safetensors",
349
+ "mlp1.3.bias": "model-00011-of-00011.safetensors",
350
+ "mlp1.3.weight": "model-00011-of-00011.safetensors",
351
+ "vision_model.embeddings.class_embedding": "model-00001-of-00011.safetensors",
352
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00011.safetensors",
353
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00011.safetensors",
354
+ "vision_model.embeddings.position_embedding": "model-00001-of-00011.safetensors",
355
+ "vision_model.encoder.layers.0.attn.k_norm.weight": "model-00001-of-00011.safetensors",
356
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00011.safetensors",
357
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00011.safetensors",
358
+ "vision_model.encoder.layers.0.attn.q_norm.weight": "model-00001-of-00011.safetensors",
359
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00011.safetensors",
360
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00011.safetensors",
361
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00011.safetensors",
362
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00011.safetensors",
363
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00011.safetensors",
364
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00011.safetensors",
365
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00011.safetensors",
366
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00011.safetensors",
367
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00011.safetensors",
368
+ "vision_model.encoder.layers.1.attn.k_norm.weight": "model-00001-of-00011.safetensors",
369
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00011.safetensors",
370
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00011.safetensors",
371
+ "vision_model.encoder.layers.1.attn.q_norm.weight": "model-00001-of-00011.safetensors",
372
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00011.safetensors",
373
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00011.safetensors",
374
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00011.safetensors",
375
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00011.safetensors",
376
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00011.safetensors",
377
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00011.safetensors",
378
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00011.safetensors",
379
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00011.safetensors",
380
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00011.safetensors",
381
+ "vision_model.encoder.layers.10.attn.k_norm.weight": "model-00001-of-00011.safetensors",
382
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00011.safetensors",
383
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00011.safetensors",
384
+ "vision_model.encoder.layers.10.attn.q_norm.weight": "model-00001-of-00011.safetensors",
385
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00011.safetensors",
386
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00011.safetensors",
387
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00011.safetensors",
388
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00011.safetensors",
389
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00011.safetensors",
390
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00011.safetensors",
391
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00011.safetensors",
392
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00011.safetensors",
393
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00011.safetensors",
394
+ "vision_model.encoder.layers.11.attn.k_norm.weight": "model-00001-of-00011.safetensors",
395
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00011.safetensors",
396
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00011.safetensors",
397
+ "vision_model.encoder.layers.11.attn.q_norm.weight": "model-00001-of-00011.safetensors",
398
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00011.safetensors",
399
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00011.safetensors",
400
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00011.safetensors",
401
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00011.safetensors",
402
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00011.safetensors",
403
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00011.safetensors",
404
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00011.safetensors",
405
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00011.safetensors",
406
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00011.safetensors",
407
+ "vision_model.encoder.layers.12.attn.k_norm.weight": "model-00001-of-00011.safetensors",
408
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00011.safetensors",
409
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00011.safetensors",
410
+ "vision_model.encoder.layers.12.attn.q_norm.weight": "model-00001-of-00011.safetensors",
411
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00011.safetensors",
412
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00011.safetensors",
413
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00011.safetensors",
414
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00011.safetensors",
415
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00011.safetensors",
416
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00011.safetensors",
417
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00011.safetensors",
418
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00011.safetensors",
419
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00011.safetensors",
420
+ "vision_model.encoder.layers.13.attn.k_norm.weight": "model-00001-of-00011.safetensors",
421
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00011.safetensors",
422
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00011.safetensors",
423
+ "vision_model.encoder.layers.13.attn.q_norm.weight": "model-00001-of-00011.safetensors",
424
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00011.safetensors",
425
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00011.safetensors",
426
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00011.safetensors",
427
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00011.safetensors",
428
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00011.safetensors",
429
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00011.safetensors",
430
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00011.safetensors",
431
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00011.safetensors",
432
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00011.safetensors",
433
+ "vision_model.encoder.layers.14.attn.k_norm.weight": "model-00001-of-00011.safetensors",
434
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00011.safetensors",
435
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00011.safetensors",
436
+ "vision_model.encoder.layers.14.attn.q_norm.weight": "model-00001-of-00011.safetensors",
437
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00011.safetensors",
438
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00011.safetensors",
439
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00011.safetensors",
440
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00011.safetensors",
441
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00011.safetensors",
442
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00011.safetensors",
443
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00011.safetensors",
444
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00011.safetensors",
445
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00011.safetensors",
446
+ "vision_model.encoder.layers.15.attn.k_norm.weight": "model-00001-of-00011.safetensors",
447
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00011.safetensors",
448
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00011.safetensors",
449
+ "vision_model.encoder.layers.15.attn.q_norm.weight": "model-00001-of-00011.safetensors",
450
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00011.safetensors",
451
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00011.safetensors",
452
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00011.safetensors",
453
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00011.safetensors",
454
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00011.safetensors",
455
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00011.safetensors",
456
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00011.safetensors",
457
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00011.safetensors",
458
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00011.safetensors",
459
+ "vision_model.encoder.layers.16.attn.k_norm.weight": "model-00001-of-00011.safetensors",
460
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00011.safetensors",
461
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00011.safetensors",
462
+ "vision_model.encoder.layers.16.attn.q_norm.weight": "model-00001-of-00011.safetensors",
463
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00011.safetensors",
464
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00011.safetensors",
465
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00011.safetensors",
466
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00011.safetensors",
467
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00011.safetensors",
468
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00011.safetensors",
469
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00011.safetensors",
470
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00011.safetensors",
471
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00011.safetensors",
472
+ "vision_model.encoder.layers.17.attn.k_norm.weight": "model-00001-of-00011.safetensors",
473
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00011.safetensors",
474
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00011.safetensors",
475
+ "vision_model.encoder.layers.17.attn.q_norm.weight": "model-00001-of-00011.safetensors",
476
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00011.safetensors",
477
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00011.safetensors",
478
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00011.safetensors",
479
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00011.safetensors",
480
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00011.safetensors",
481
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00011.safetensors",
482
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00011.safetensors",
483
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00011.safetensors",
484
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00011.safetensors",
485
+ "vision_model.encoder.layers.18.attn.k_norm.weight": "model-00001-of-00011.safetensors",
486
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00011.safetensors",
487
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00011.safetensors",
488
+ "vision_model.encoder.layers.18.attn.q_norm.weight": "model-00001-of-00011.safetensors",
489
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00011.safetensors",
490
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00011.safetensors",
491
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00011.safetensors",
492
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00011.safetensors",
493
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00011.safetensors",
494
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00011.safetensors",
495
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00011.safetensors",
496
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00011.safetensors",
497
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00011.safetensors",
498
+ "vision_model.encoder.layers.19.attn.k_norm.weight": "model-00001-of-00011.safetensors",
499
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00011.safetensors",
500
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00011.safetensors",
501
+ "vision_model.encoder.layers.19.attn.q_norm.weight": "model-00001-of-00011.safetensors",
502
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00011.safetensors",
503
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00011.safetensors",
504
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00011.safetensors",
505
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00011.safetensors",
506
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00011.safetensors",
507
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00011.safetensors",
508
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00011.safetensors",
509
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00011.safetensors",
510
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00011.safetensors",
511
+ "vision_model.encoder.layers.2.attn.k_norm.weight": "model-00001-of-00011.safetensors",
512
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00011.safetensors",
513
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00011.safetensors",
514
+ "vision_model.encoder.layers.2.attn.q_norm.weight": "model-00001-of-00011.safetensors",
515
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00011.safetensors",
516
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00011.safetensors",
517
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00011.safetensors",
518
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00011.safetensors",
519
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00011.safetensors",
520
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00011.safetensors",
521
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00011.safetensors",
522
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00011.safetensors",
523
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00011.safetensors",
524
+ "vision_model.encoder.layers.20.attn.k_norm.weight": "model-00001-of-00011.safetensors",
525
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00002-of-00011.safetensors",
526
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00002-of-00011.safetensors",
527
+ "vision_model.encoder.layers.20.attn.q_norm.weight": "model-00001-of-00011.safetensors",
528
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00011.safetensors",
529
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00011.safetensors",
530
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00011.safetensors",
531
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00002-of-00011.safetensors",
532
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00002-of-00011.safetensors",
533
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00002-of-00011.safetensors",
534
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00002-of-00011.safetensors",
535
+ "vision_model.encoder.layers.20.norm1.weight": "model-00002-of-00011.safetensors",
536
+ "vision_model.encoder.layers.20.norm2.weight": "model-00002-of-00011.safetensors",
537
+ "vision_model.encoder.layers.21.attn.k_norm.weight": "model-00002-of-00011.safetensors",
538
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00002-of-00011.safetensors",
539
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00002-of-00011.safetensors",
540
+ "vision_model.encoder.layers.21.attn.q_norm.weight": "model-00002-of-00011.safetensors",
541
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00002-of-00011.safetensors",
542
+ "vision_model.encoder.layers.21.ls1": "model-00002-of-00011.safetensors",
543
+ "vision_model.encoder.layers.21.ls2": "model-00002-of-00011.safetensors",
544
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00002-of-00011.safetensors",
545
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00002-of-00011.safetensors",
546
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00002-of-00011.safetensors",
547
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00002-of-00011.safetensors",
548
+ "vision_model.encoder.layers.21.norm1.weight": "model-00002-of-00011.safetensors",
549
+ "vision_model.encoder.layers.21.norm2.weight": "model-00002-of-00011.safetensors",
550
+ "vision_model.encoder.layers.22.attn.k_norm.weight": "model-00002-of-00011.safetensors",
551
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00002-of-00011.safetensors",
552
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00002-of-00011.safetensors",
553
+ "vision_model.encoder.layers.22.attn.q_norm.weight": "model-00002-of-00011.safetensors",
554
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00002-of-00011.safetensors",
555
+ "vision_model.encoder.layers.22.ls1": "model-00002-of-00011.safetensors",
556
+ "vision_model.encoder.layers.22.ls2": "model-00002-of-00011.safetensors",
557
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00002-of-00011.safetensors",
558
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00002-of-00011.safetensors",
559
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00002-of-00011.safetensors",
560
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00002-of-00011.safetensors",
561
+ "vision_model.encoder.layers.22.norm1.weight": "model-00002-of-00011.safetensors",
562
+ "vision_model.encoder.layers.22.norm2.weight": "model-00002-of-00011.safetensors",
563
+ "vision_model.encoder.layers.23.attn.k_norm.weight": "model-00002-of-00011.safetensors",
564
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00002-of-00011.safetensors",
565
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00002-of-00011.safetensors",
566
+ "vision_model.encoder.layers.23.attn.q_norm.weight": "model-00002-of-00011.safetensors",
567
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00002-of-00011.safetensors",
568
+ "vision_model.encoder.layers.23.ls1": "model-00002-of-00011.safetensors",
569
+ "vision_model.encoder.layers.23.ls2": "model-00002-of-00011.safetensors",
570
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00002-of-00011.safetensors",
571
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00002-of-00011.safetensors",
572
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00002-of-00011.safetensors",
573
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00002-of-00011.safetensors",
574
+ "vision_model.encoder.layers.23.norm1.weight": "model-00002-of-00011.safetensors",
575
+ "vision_model.encoder.layers.23.norm2.weight": "model-00002-of-00011.safetensors",
576
+ "vision_model.encoder.layers.24.attn.k_norm.weight": "model-00002-of-00011.safetensors",
577
+ "vision_model.encoder.layers.24.attn.proj.bias": "model-00002-of-00011.safetensors",
578
+ "vision_model.encoder.layers.24.attn.proj.weight": "model-00002-of-00011.safetensors",
579
+ "vision_model.encoder.layers.24.attn.q_norm.weight": "model-00002-of-00011.safetensors",
580
+ "vision_model.encoder.layers.24.attn.qkv.weight": "model-00002-of-00011.safetensors",
581
+ "vision_model.encoder.layers.24.ls1": "model-00002-of-00011.safetensors",
582
+ "vision_model.encoder.layers.24.ls2": "model-00002-of-00011.safetensors",
583
+ "vision_model.encoder.layers.24.mlp.fc1.bias": "model-00002-of-00011.safetensors",
584
+ "vision_model.encoder.layers.24.mlp.fc1.weight": "model-00002-of-00011.safetensors",
585
+ "vision_model.encoder.layers.24.mlp.fc2.bias": "model-00002-of-00011.safetensors",
586
+ "vision_model.encoder.layers.24.mlp.fc2.weight": "model-00002-of-00011.safetensors",
587
+ "vision_model.encoder.layers.24.norm1.weight": "model-00002-of-00011.safetensors",
588
+ "vision_model.encoder.layers.24.norm2.weight": "model-00002-of-00011.safetensors",
589
+ "vision_model.encoder.layers.25.attn.k_norm.weight": "model-00002-of-00011.safetensors",
590
+ "vision_model.encoder.layers.25.attn.proj.bias": "model-00002-of-00011.safetensors",
591
+ "vision_model.encoder.layers.25.attn.proj.weight": "model-00002-of-00011.safetensors",
592
+ "vision_model.encoder.layers.25.attn.q_norm.weight": "model-00002-of-00011.safetensors",
593
+ "vision_model.encoder.layers.25.attn.qkv.weight": "model-00002-of-00011.safetensors",
594
+ "vision_model.encoder.layers.25.ls1": "model-00002-of-00011.safetensors",
595
+ "vision_model.encoder.layers.25.ls2": "model-00002-of-00011.safetensors",
596
+ "vision_model.encoder.layers.25.mlp.fc1.bias": "model-00002-of-00011.safetensors",
597
+ "vision_model.encoder.layers.25.mlp.fc1.weight": "model-00002-of-00011.safetensors",
598
+ "vision_model.encoder.layers.25.mlp.fc2.bias": "model-00002-of-00011.safetensors",
599
+ "vision_model.encoder.layers.25.mlp.fc2.weight": "model-00002-of-00011.safetensors",
600
+ "vision_model.encoder.layers.25.norm1.weight": "model-00002-of-00011.safetensors",
601
+ "vision_model.encoder.layers.25.norm2.weight": "model-00002-of-00011.safetensors",
602
+ "vision_model.encoder.layers.26.attn.k_norm.weight": "model-00002-of-00011.safetensors",
603
+ "vision_model.encoder.layers.26.attn.proj.bias": "model-00002-of-00011.safetensors",
604
+ "vision_model.encoder.layers.26.attn.proj.weight": "model-00002-of-00011.safetensors",
605
+ "vision_model.encoder.layers.26.attn.q_norm.weight": "model-00002-of-00011.safetensors",
606
+ "vision_model.encoder.layers.26.attn.qkv.weight": "model-00002-of-00011.safetensors",
607
+ "vision_model.encoder.layers.26.ls1": "model-00002-of-00011.safetensors",
608
+ "vision_model.encoder.layers.26.ls2": "model-00002-of-00011.safetensors",
609
+ "vision_model.encoder.layers.26.mlp.fc1.bias": "model-00002-of-00011.safetensors",
610
+ "vision_model.encoder.layers.26.mlp.fc1.weight": "model-00002-of-00011.safetensors",
611
+ "vision_model.encoder.layers.26.mlp.fc2.bias": "model-00002-of-00011.safetensors",
612
+ "vision_model.encoder.layers.26.mlp.fc2.weight": "model-00002-of-00011.safetensors",
613
+ "vision_model.encoder.layers.26.norm1.weight": "model-00002-of-00011.safetensors",
614
+ "vision_model.encoder.layers.26.norm2.weight": "model-00002-of-00011.safetensors",
615
+ "vision_model.encoder.layers.27.attn.k_norm.weight": "model-00002-of-00011.safetensors",
616
+ "vision_model.encoder.layers.27.attn.proj.bias": "model-00002-of-00011.safetensors",
617
+ "vision_model.encoder.layers.27.attn.proj.weight": "model-00002-of-00011.safetensors",
618
+ "vision_model.encoder.layers.27.attn.q_norm.weight": "model-00002-of-00011.safetensors",
619
+ "vision_model.encoder.layers.27.attn.qkv.weight": "model-00002-of-00011.safetensors",
620
+ "vision_model.encoder.layers.27.ls1": "model-00002-of-00011.safetensors",
621
+ "vision_model.encoder.layers.27.ls2": "model-00002-of-00011.safetensors",
622
+ "vision_model.encoder.layers.27.mlp.fc1.bias": "model-00002-of-00011.safetensors",
623
+ "vision_model.encoder.layers.27.mlp.fc1.weight": "model-00002-of-00011.safetensors",
624
+ "vision_model.encoder.layers.27.mlp.fc2.bias": "model-00002-of-00011.safetensors",
625
+ "vision_model.encoder.layers.27.mlp.fc2.weight": "model-00002-of-00011.safetensors",
626
+ "vision_model.encoder.layers.27.norm1.weight": "model-00002-of-00011.safetensors",
627
+ "vision_model.encoder.layers.27.norm2.weight": "model-00002-of-00011.safetensors",
628
+ "vision_model.encoder.layers.28.attn.k_norm.weight": "model-00002-of-00011.safetensors",
629
+ "vision_model.encoder.layers.28.attn.proj.bias": "model-00002-of-00011.safetensors",
630
+ "vision_model.encoder.layers.28.attn.proj.weight": "model-00002-of-00011.safetensors",
631
+ "vision_model.encoder.layers.28.attn.q_norm.weight": "model-00002-of-00011.safetensors",
632
+ "vision_model.encoder.layers.28.attn.qkv.weight": "model-00002-of-00011.safetensors",
633
+ "vision_model.encoder.layers.28.ls1": "model-00002-of-00011.safetensors",
634
+ "vision_model.encoder.layers.28.ls2": "model-00002-of-00011.safetensors",
635
+ "vision_model.encoder.layers.28.mlp.fc1.bias": "model-00002-of-00011.safetensors",
636
+ "vision_model.encoder.layers.28.mlp.fc1.weight": "model-00002-of-00011.safetensors",
637
+ "vision_model.encoder.layers.28.mlp.fc2.bias": "model-00002-of-00011.safetensors",
638
+ "vision_model.encoder.layers.28.mlp.fc2.weight": "model-00002-of-00011.safetensors",
639
+ "vision_model.encoder.layers.28.norm1.weight": "model-00002-of-00011.safetensors",
640
+ "vision_model.encoder.layers.28.norm2.weight": "model-00002-of-00011.safetensors",
641
+ "vision_model.encoder.layers.29.attn.k_norm.weight": "model-00002-of-00011.safetensors",
642
+ "vision_model.encoder.layers.29.attn.proj.bias": "model-00002-of-00011.safetensors",
643
+ "vision_model.encoder.layers.29.attn.proj.weight": "model-00002-of-00011.safetensors",
644
+ "vision_model.encoder.layers.29.attn.q_norm.weight": "model-00002-of-00011.safetensors",
645
+ "vision_model.encoder.layers.29.attn.qkv.weight": "model-00002-of-00011.safetensors",
646
+ "vision_model.encoder.layers.29.ls1": "model-00002-of-00011.safetensors",
647
+ "vision_model.encoder.layers.29.ls2": "model-00002-of-00011.safetensors",
648
+ "vision_model.encoder.layers.29.mlp.fc1.bias": "model-00002-of-00011.safetensors",
649
+ "vision_model.encoder.layers.29.mlp.fc1.weight": "model-00002-of-00011.safetensors",
650
+ "vision_model.encoder.layers.29.mlp.fc2.bias": "model-00002-of-00011.safetensors",
651
+ "vision_model.encoder.layers.29.mlp.fc2.weight": "model-00002-of-00011.safetensors",
652
+ "vision_model.encoder.layers.29.norm1.weight": "model-00002-of-00011.safetensors",
653
+ "vision_model.encoder.layers.29.norm2.weight": "model-00002-of-00011.safetensors",
654
+ "vision_model.encoder.layers.3.attn.k_norm.weight": "model-00001-of-00011.safetensors",
655
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00011.safetensors",
656
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00011.safetensors",
657
+ "vision_model.encoder.layers.3.attn.q_norm.weight": "model-00001-of-00011.safetensors",
658
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00011.safetensors",
659
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00011.safetensors",
660
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00011.safetensors",
661
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00011.safetensors",
662
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00011.safetensors",
663
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00011.safetensors",
664
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00011.safetensors",
665
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00011.safetensors",
666
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00011.safetensors",
667
+ "vision_model.encoder.layers.30.attn.k_norm.weight": "model-00002-of-00011.safetensors",
668
+ "vision_model.encoder.layers.30.attn.proj.bias": "model-00002-of-00011.safetensors",
669
+ "vision_model.encoder.layers.30.attn.proj.weight": "model-00002-of-00011.safetensors",
670
+ "vision_model.encoder.layers.30.attn.q_norm.weight": "model-00002-of-00011.safetensors",
671
+ "vision_model.encoder.layers.30.attn.qkv.weight": "model-00002-of-00011.safetensors",
672
+ "vision_model.encoder.layers.30.ls1": "model-00002-of-00011.safetensors",
673
+ "vision_model.encoder.layers.30.ls2": "model-00002-of-00011.safetensors",
674
+ "vision_model.encoder.layers.30.mlp.fc1.bias": "model-00002-of-00011.safetensors",
675
+ "vision_model.encoder.layers.30.mlp.fc1.weight": "model-00002-of-00011.safetensors",
676
+ "vision_model.encoder.layers.30.mlp.fc2.bias": "model-00002-of-00011.safetensors",
677
+ "vision_model.encoder.layers.30.mlp.fc2.weight": "model-00002-of-00011.safetensors",
678
+ "vision_model.encoder.layers.30.norm1.weight": "model-00002-of-00011.safetensors",
679
+ "vision_model.encoder.layers.30.norm2.weight": "model-00002-of-00011.safetensors",
680
+ "vision_model.encoder.layers.31.attn.k_norm.weight": "model-00002-of-00011.safetensors",
681
+ "vision_model.encoder.layers.31.attn.proj.bias": "model-00002-of-00011.safetensors",
682
+ "vision_model.encoder.layers.31.attn.proj.weight": "model-00002-of-00011.safetensors",
683
+ "vision_model.encoder.layers.31.attn.q_norm.weight": "model-00002-of-00011.safetensors",
684
+ "vision_model.encoder.layers.31.attn.qkv.weight": "model-00002-of-00011.safetensors",
685
+ "vision_model.encoder.layers.31.ls1": "model-00002-of-00011.safetensors",
686
+ "vision_model.encoder.layers.31.ls2": "model-00002-of-00011.safetensors",
687
+ "vision_model.encoder.layers.31.mlp.fc1.bias": "model-00002-of-00011.safetensors",
688
+ "vision_model.encoder.layers.31.mlp.fc1.weight": "model-00002-of-00011.safetensors",
689
+ "vision_model.encoder.layers.31.mlp.fc2.bias": "model-00002-of-00011.safetensors",
690
+ "vision_model.encoder.layers.31.mlp.fc2.weight": "model-00002-of-00011.safetensors",
691
+ "vision_model.encoder.layers.31.norm1.weight": "model-00002-of-00011.safetensors",
692
+ "vision_model.encoder.layers.31.norm2.weight": "model-00002-of-00011.safetensors",
693
+ "vision_model.encoder.layers.32.attn.k_norm.weight": "model-00002-of-00011.safetensors",
694
+ "vision_model.encoder.layers.32.attn.proj.bias": "model-00002-of-00011.safetensors",
695
+ "vision_model.encoder.layers.32.attn.proj.weight": "model-00002-of-00011.safetensors",
696
+ "vision_model.encoder.layers.32.attn.q_norm.weight": "model-00002-of-00011.safetensors",
697
+ "vision_model.encoder.layers.32.attn.qkv.weight": "model-00002-of-00011.safetensors",
698
+ "vision_model.encoder.layers.32.ls1": "model-00002-of-00011.safetensors",
699
+ "vision_model.encoder.layers.32.ls2": "model-00002-of-00011.safetensors",
700
+ "vision_model.encoder.layers.32.mlp.fc1.bias": "model-00002-of-00011.safetensors",
701
+ "vision_model.encoder.layers.32.mlp.fc1.weight": "model-00002-of-00011.safetensors",
702
+ "vision_model.encoder.layers.32.mlp.fc2.bias": "model-00002-of-00011.safetensors",
703
+ "vision_model.encoder.layers.32.mlp.fc2.weight": "model-00002-of-00011.safetensors",
704
+ "vision_model.encoder.layers.32.norm1.weight": "model-00002-of-00011.safetensors",
705
+ "vision_model.encoder.layers.32.norm2.weight": "model-00002-of-00011.safetensors",
706
+ "vision_model.encoder.layers.33.attn.k_norm.weight": "model-00002-of-00011.safetensors",
707
+ "vision_model.encoder.layers.33.attn.proj.bias": "model-00002-of-00011.safetensors",
708
+ "vision_model.encoder.layers.33.attn.proj.weight": "model-00002-of-00011.safetensors",
709
+ "vision_model.encoder.layers.33.attn.q_norm.weight": "model-00002-of-00011.safetensors",
710
+ "vision_model.encoder.layers.33.attn.qkv.weight": "model-00002-of-00011.safetensors",
711
+ "vision_model.encoder.layers.33.ls1": "model-00002-of-00011.safetensors",
712
+ "vision_model.encoder.layers.33.ls2": "model-00002-of-00011.safetensors",
713
+ "vision_model.encoder.layers.33.mlp.fc1.bias": "model-00002-of-00011.safetensors",
714
+ "vision_model.encoder.layers.33.mlp.fc1.weight": "model-00002-of-00011.safetensors",
715
+ "vision_model.encoder.layers.33.mlp.fc2.bias": "model-00002-of-00011.safetensors",
716
+ "vision_model.encoder.layers.33.mlp.fc2.weight": "model-00002-of-00011.safetensors",
717
+ "vision_model.encoder.layers.33.norm1.weight": "model-00002-of-00011.safetensors",
718
+ "vision_model.encoder.layers.33.norm2.weight": "model-00002-of-00011.safetensors",
719
+ "vision_model.encoder.layers.34.attn.k_norm.weight": "model-00002-of-00011.safetensors",
720
+ "vision_model.encoder.layers.34.attn.proj.bias": "model-00002-of-00011.safetensors",
721
+ "vision_model.encoder.layers.34.attn.proj.weight": "model-00002-of-00011.safetensors",
722
+ "vision_model.encoder.layers.34.attn.q_norm.weight": "model-00002-of-00011.safetensors",
723
+ "vision_model.encoder.layers.34.attn.qkv.weight": "model-00002-of-00011.safetensors",
724
+ "vision_model.encoder.layers.34.ls1": "model-00002-of-00011.safetensors",
725
+ "vision_model.encoder.layers.34.ls2": "model-00002-of-00011.safetensors",
726
+ "vision_model.encoder.layers.34.mlp.fc1.bias": "model-00002-of-00011.safetensors",
727
+ "vision_model.encoder.layers.34.mlp.fc1.weight": "model-00002-of-00011.safetensors",
728
+ "vision_model.encoder.layers.34.mlp.fc2.bias": "model-00002-of-00011.safetensors",
729
+ "vision_model.encoder.layers.34.mlp.fc2.weight": "model-00002-of-00011.safetensors",
730
+ "vision_model.encoder.layers.34.norm1.weight": "model-00002-of-00011.safetensors",
731
+ "vision_model.encoder.layers.34.norm2.weight": "model-00002-of-00011.safetensors",
732
+ "vision_model.encoder.layers.35.attn.k_norm.weight": "model-00002-of-00011.safetensors",
733
+ "vision_model.encoder.layers.35.attn.proj.bias": "model-00002-of-00011.safetensors",
734
+ "vision_model.encoder.layers.35.attn.proj.weight": "model-00002-of-00011.safetensors",
735
+ "vision_model.encoder.layers.35.attn.q_norm.weight": "model-00002-of-00011.safetensors",
736
+ "vision_model.encoder.layers.35.attn.qkv.weight": "model-00002-of-00011.safetensors",
737
+ "vision_model.encoder.layers.35.ls1": "model-00002-of-00011.safetensors",
738
+ "vision_model.encoder.layers.35.ls2": "model-00002-of-00011.safetensors",
739
+ "vision_model.encoder.layers.35.mlp.fc1.bias": "model-00002-of-00011.safetensors",
740
+ "vision_model.encoder.layers.35.mlp.fc1.weight": "model-00002-of-00011.safetensors",
741
+ "vision_model.encoder.layers.35.mlp.fc2.bias": "model-00002-of-00011.safetensors",
742
+ "vision_model.encoder.layers.35.mlp.fc2.weight": "model-00002-of-00011.safetensors",
743
+ "vision_model.encoder.layers.35.norm1.weight": "model-00002-of-00011.safetensors",
744
+ "vision_model.encoder.layers.35.norm2.weight": "model-00002-of-00011.safetensors",
745
+ "vision_model.encoder.layers.36.attn.k_norm.weight": "model-00002-of-00011.safetensors",
746
+ "vision_model.encoder.layers.36.attn.proj.bias": "model-00002-of-00011.safetensors",
747
+ "vision_model.encoder.layers.36.attn.proj.weight": "model-00002-of-00011.safetensors",
748
+ "vision_model.encoder.layers.36.attn.q_norm.weight": "model-00002-of-00011.safetensors",
749
+ "vision_model.encoder.layers.36.attn.qkv.weight": "model-00002-of-00011.safetensors",
750
+ "vision_model.encoder.layers.36.ls1": "model-00002-of-00011.safetensors",
751
+ "vision_model.encoder.layers.36.ls2": "model-00002-of-00011.safetensors",
752
+ "vision_model.encoder.layers.36.mlp.fc1.bias": "model-00002-of-00011.safetensors",
753
+ "vision_model.encoder.layers.36.mlp.fc1.weight": "model-00002-of-00011.safetensors",
754
+ "vision_model.encoder.layers.36.mlp.fc2.bias": "model-00002-of-00011.safetensors",
755
+ "vision_model.encoder.layers.36.mlp.fc2.weight": "model-00002-of-00011.safetensors",
756
+ "vision_model.encoder.layers.36.norm1.weight": "model-00002-of-00011.safetensors",
757
+ "vision_model.encoder.layers.36.norm2.weight": "model-00002-of-00011.safetensors",
758
+ "vision_model.encoder.layers.37.attn.k_norm.weight": "model-00002-of-00011.safetensors",
759
+ "vision_model.encoder.layers.37.attn.proj.bias": "model-00002-of-00011.safetensors",
760
+ "vision_model.encoder.layers.37.attn.proj.weight": "model-00002-of-00011.safetensors",
761
+ "vision_model.encoder.layers.37.attn.q_norm.weight": "model-00002-of-00011.safetensors",
762
+ "vision_model.encoder.layers.37.attn.qkv.weight": "model-00002-of-00011.safetensors",
763
+ "vision_model.encoder.layers.37.ls1": "model-00002-of-00011.safetensors",
764
+ "vision_model.encoder.layers.37.ls2": "model-00002-of-00011.safetensors",
765
+ "vision_model.encoder.layers.37.mlp.fc1.bias": "model-00002-of-00011.safetensors",
766
+ "vision_model.encoder.layers.37.mlp.fc1.weight": "model-00002-of-00011.safetensors",
767
+ "vision_model.encoder.layers.37.mlp.fc2.bias": "model-00002-of-00011.safetensors",
768
+ "vision_model.encoder.layers.37.mlp.fc2.weight": "model-00002-of-00011.safetensors",
769
+ "vision_model.encoder.layers.37.norm1.weight": "model-00002-of-00011.safetensors",
770
+ "vision_model.encoder.layers.37.norm2.weight": "model-00002-of-00011.safetensors",
771
+ "vision_model.encoder.layers.38.attn.k_norm.weight": "model-00002-of-00011.safetensors",
772
+ "vision_model.encoder.layers.38.attn.proj.bias": "model-00002-of-00011.safetensors",
773
+ "vision_model.encoder.layers.38.attn.proj.weight": "model-00002-of-00011.safetensors",
774
+ "vision_model.encoder.layers.38.attn.q_norm.weight": "model-00002-of-00011.safetensors",
775
+ "vision_model.encoder.layers.38.attn.qkv.weight": "model-00002-of-00011.safetensors",
776
+ "vision_model.encoder.layers.38.ls1": "model-00002-of-00011.safetensors",
777
+ "vision_model.encoder.layers.38.ls2": "model-00002-of-00011.safetensors",
778
+ "vision_model.encoder.layers.38.mlp.fc1.bias": "model-00002-of-00011.safetensors",
779
+ "vision_model.encoder.layers.38.mlp.fc1.weight": "model-00002-of-00011.safetensors",
780
+ "vision_model.encoder.layers.38.mlp.fc2.bias": "model-00002-of-00011.safetensors",
781
+ "vision_model.encoder.layers.38.mlp.fc2.weight": "model-00002-of-00011.safetensors",
782
+ "vision_model.encoder.layers.38.norm1.weight": "model-00002-of-00011.safetensors",
783
+ "vision_model.encoder.layers.38.norm2.weight": "model-00002-of-00011.safetensors",
784
+ "vision_model.encoder.layers.39.attn.k_norm.weight": "model-00002-of-00011.safetensors",
785
+ "vision_model.encoder.layers.39.attn.proj.bias": "model-00002-of-00011.safetensors",
786
+ "vision_model.encoder.layers.39.attn.proj.weight": "model-00002-of-00011.safetensors",
787
+ "vision_model.encoder.layers.39.attn.q_norm.weight": "model-00002-of-00011.safetensors",
788
+ "vision_model.encoder.layers.39.attn.qkv.weight": "model-00002-of-00011.safetensors",
789
+ "vision_model.encoder.layers.39.ls1": "model-00002-of-00011.safetensors",
790
+ "vision_model.encoder.layers.39.ls2": "model-00002-of-00011.safetensors",
791
+ "vision_model.encoder.layers.39.mlp.fc1.bias": "model-00002-of-00011.safetensors",
792
+ "vision_model.encoder.layers.39.mlp.fc1.weight": "model-00002-of-00011.safetensors",
793
+ "vision_model.encoder.layers.39.mlp.fc2.bias": "model-00002-of-00011.safetensors",
794
+ "vision_model.encoder.layers.39.mlp.fc2.weight": "model-00002-of-00011.safetensors",
795
+ "vision_model.encoder.layers.39.norm1.weight": "model-00002-of-00011.safetensors",
796
+ "vision_model.encoder.layers.39.norm2.weight": "model-00002-of-00011.safetensors",
797
+ "vision_model.encoder.layers.4.attn.k_norm.weight": "model-00001-of-00011.safetensors",
798
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00011.safetensors",
799
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00011.safetensors",
800
+ "vision_model.encoder.layers.4.attn.q_norm.weight": "model-00001-of-00011.safetensors",
801
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00011.safetensors",
802
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00011.safetensors",
803
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00011.safetensors",
804
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00011.safetensors",
805
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00011.safetensors",
806
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00011.safetensors",
807
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00011.safetensors",
808
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00011.safetensors",
809
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00011.safetensors",
810
+ "vision_model.encoder.layers.40.attn.k_norm.weight": "model-00002-of-00011.safetensors",
811
+ "vision_model.encoder.layers.40.attn.proj.bias": "model-00002-of-00011.safetensors",
812
+ "vision_model.encoder.layers.40.attn.proj.weight": "model-00002-of-00011.safetensors",
813
+ "vision_model.encoder.layers.40.attn.q_norm.weight": "model-00002-of-00011.safetensors",
814
+ "vision_model.encoder.layers.40.attn.qkv.weight": "model-00002-of-00011.safetensors",
815
+ "vision_model.encoder.layers.40.ls1": "model-00002-of-00011.safetensors",
816
+ "vision_model.encoder.layers.40.ls2": "model-00002-of-00011.safetensors",
817
+ "vision_model.encoder.layers.40.mlp.fc1.bias": "model-00003-of-00011.safetensors",
818
+ "vision_model.encoder.layers.40.mlp.fc1.weight": "model-00003-of-00011.safetensors",
819
+ "vision_model.encoder.layers.40.mlp.fc2.bias": "model-00003-of-00011.safetensors",
820
+ "vision_model.encoder.layers.40.mlp.fc2.weight": "model-00003-of-00011.safetensors",
821
+ "vision_model.encoder.layers.40.norm1.weight": "model-00003-of-00011.safetensors",
822
+ "vision_model.encoder.layers.40.norm2.weight": "model-00003-of-00011.safetensors",
823
+ "vision_model.encoder.layers.41.attn.k_norm.weight": "model-00003-of-00011.safetensors",
824
+ "vision_model.encoder.layers.41.attn.proj.bias": "model-00003-of-00011.safetensors",
825
+ "vision_model.encoder.layers.41.attn.proj.weight": "model-00003-of-00011.safetensors",
826
+ "vision_model.encoder.layers.41.attn.q_norm.weight": "model-00003-of-00011.safetensors",
827
+ "vision_model.encoder.layers.41.attn.qkv.weight": "model-00003-of-00011.safetensors",
828
+ "vision_model.encoder.layers.41.ls1": "model-00003-of-00011.safetensors",
829
+ "vision_model.encoder.layers.41.ls2": "model-00003-of-00011.safetensors",
830
+ "vision_model.encoder.layers.41.mlp.fc1.bias": "model-00003-of-00011.safetensors",
831
+ "vision_model.encoder.layers.41.mlp.fc1.weight": "model-00003-of-00011.safetensors",
832
+ "vision_model.encoder.layers.41.mlp.fc2.bias": "model-00003-of-00011.safetensors",
833
+ "vision_model.encoder.layers.41.mlp.fc2.weight": "model-00003-of-00011.safetensors",
834
+ "vision_model.encoder.layers.41.norm1.weight": "model-00003-of-00011.safetensors",
835
+ "vision_model.encoder.layers.41.norm2.weight": "model-00003-of-00011.safetensors",
836
+ "vision_model.encoder.layers.42.attn.k_norm.weight": "model-00003-of-00011.safetensors",
837
+ "vision_model.encoder.layers.42.attn.proj.bias": "model-00003-of-00011.safetensors",
838
+ "vision_model.encoder.layers.42.attn.proj.weight": "model-00003-of-00011.safetensors",
839
+ "vision_model.encoder.layers.42.attn.q_norm.weight": "model-00003-of-00011.safetensors",
840
+ "vision_model.encoder.layers.42.attn.qkv.weight": "model-00003-of-00011.safetensors",
841
+ "vision_model.encoder.layers.42.ls1": "model-00003-of-00011.safetensors",
842
+ "vision_model.encoder.layers.42.ls2": "model-00003-of-00011.safetensors",
843
+ "vision_model.encoder.layers.42.mlp.fc1.bias": "model-00003-of-00011.safetensors",
844
+ "vision_model.encoder.layers.42.mlp.fc1.weight": "model-00003-of-00011.safetensors",
845
+ "vision_model.encoder.layers.42.mlp.fc2.bias": "model-00003-of-00011.safetensors",
846
+ "vision_model.encoder.layers.42.mlp.fc2.weight": "model-00003-of-00011.safetensors",
847
+ "vision_model.encoder.layers.42.norm1.weight": "model-00003-of-00011.safetensors",
848
+ "vision_model.encoder.layers.42.norm2.weight": "model-00003-of-00011.safetensors",
849
+ "vision_model.encoder.layers.43.attn.k_norm.weight": "model-00003-of-00011.safetensors",
850
+ "vision_model.encoder.layers.43.attn.proj.bias": "model-00003-of-00011.safetensors",
851
+ "vision_model.encoder.layers.43.attn.proj.weight": "model-00003-of-00011.safetensors",
852
+ "vision_model.encoder.layers.43.attn.q_norm.weight": "model-00003-of-00011.safetensors",
853
+ "vision_model.encoder.layers.43.attn.qkv.weight": "model-00003-of-00011.safetensors",
854
+ "vision_model.encoder.layers.43.ls1": "model-00003-of-00011.safetensors",
855
+ "vision_model.encoder.layers.43.ls2": "model-00003-of-00011.safetensors",
856
+ "vision_model.encoder.layers.43.mlp.fc1.bias": "model-00003-of-00011.safetensors",
857
+ "vision_model.encoder.layers.43.mlp.fc1.weight": "model-00003-of-00011.safetensors",
858
+ "vision_model.encoder.layers.43.mlp.fc2.bias": "model-00003-of-00011.safetensors",
859
+ "vision_model.encoder.layers.43.mlp.fc2.weight": "model-00003-of-00011.safetensors",
860
+ "vision_model.encoder.layers.43.norm1.weight": "model-00003-of-00011.safetensors",
861
+ "vision_model.encoder.layers.43.norm2.weight": "model-00003-of-00011.safetensors",
862
+ "vision_model.encoder.layers.44.attn.k_norm.weight": "model-00003-of-00011.safetensors",
863
+ "vision_model.encoder.layers.44.attn.proj.bias": "model-00003-of-00011.safetensors",
864
+ "vision_model.encoder.layers.44.attn.proj.weight": "model-00003-of-00011.safetensors",
865
+ "vision_model.encoder.layers.44.attn.q_norm.weight": "model-00003-of-00011.safetensors",
866
+ "vision_model.encoder.layers.44.attn.qkv.weight": "model-00003-of-00011.safetensors",
867
+ "vision_model.encoder.layers.44.ls1": "model-00003-of-00011.safetensors",
868
+ "vision_model.encoder.layers.44.ls2": "model-00003-of-00011.safetensors",
869
+ "vision_model.encoder.layers.44.mlp.fc1.bias": "model-00003-of-00011.safetensors",
870
+ "vision_model.encoder.layers.44.mlp.fc1.weight": "model-00003-of-00011.safetensors",
871
+ "vision_model.encoder.layers.44.mlp.fc2.bias": "model-00003-of-00011.safetensors",
872
+ "vision_model.encoder.layers.44.mlp.fc2.weight": "model-00003-of-00011.safetensors",
873
+ "vision_model.encoder.layers.44.norm1.weight": "model-00003-of-00011.safetensors",
874
+ "vision_model.encoder.layers.44.norm2.weight": "model-00003-of-00011.safetensors",
875
+ "vision_model.encoder.layers.5.attn.k_norm.weight": "model-00001-of-00011.safetensors",
876
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00011.safetensors",
877
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00011.safetensors",
878
+ "vision_model.encoder.layers.5.attn.q_norm.weight": "model-00001-of-00011.safetensors",
879
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00011.safetensors",
880
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00011.safetensors",
881
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00011.safetensors",
882
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00011.safetensors",
883
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00011.safetensors",
884
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00011.safetensors",
885
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00011.safetensors",
886
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00011.safetensors",
887
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00011.safetensors",
888
+ "vision_model.encoder.layers.6.attn.k_norm.weight": "model-00001-of-00011.safetensors",
889
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00011.safetensors",
890
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00011.safetensors",
891
+ "vision_model.encoder.layers.6.attn.q_norm.weight": "model-00001-of-00011.safetensors",
892
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00011.safetensors",
893
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00011.safetensors",
894
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00011.safetensors",
895
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00011.safetensors",
896
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00011.safetensors",
897
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00011.safetensors",
898
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00011.safetensors",
899
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00011.safetensors",
900
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00011.safetensors",
901
+ "vision_model.encoder.layers.7.attn.k_norm.weight": "model-00001-of-00011.safetensors",
902
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00011.safetensors",
903
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00011.safetensors",
904
+ "vision_model.encoder.layers.7.attn.q_norm.weight": "model-00001-of-00011.safetensors",
905
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00011.safetensors",
906
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00011.safetensors",
907
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00011.safetensors",
908
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00011.safetensors",
909
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00011.safetensors",
910
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00011.safetensors",
911
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00011.safetensors",
912
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00011.safetensors",
913
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00011.safetensors",
914
+ "vision_model.encoder.layers.8.attn.k_norm.weight": "model-00001-of-00011.safetensors",
915
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00011.safetensors",
916
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00011.safetensors",
917
+ "vision_model.encoder.layers.8.attn.q_norm.weight": "model-00001-of-00011.safetensors",
918
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00011.safetensors",
919
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00011.safetensors",
920
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00011.safetensors",
921
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00011.safetensors",
922
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00011.safetensors",
923
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00011.safetensors",
924
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00011.safetensors",
925
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00011.safetensors",
926
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00011.safetensors",
927
+ "vision_model.encoder.layers.9.attn.k_norm.weight": "model-00001-of-00011.safetensors",
928
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00011.safetensors",
929
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00011.safetensors",
930
+ "vision_model.encoder.layers.9.attn.q_norm.weight": "model-00001-of-00011.safetensors",
931
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00011.safetensors",
932
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00011.safetensors",
933
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00011.safetensors",
934
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00011.safetensors",
935
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00011.safetensors",
936
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00011.safetensors",
937
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00011.safetensors",
938
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00011.safetensors",
939
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00011.safetensors"
940
+ }
941
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ try: # v1
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_unpadded_qkvpacked_func
26
+ except: # v2
27
+ from flash_attn.flash_attn_interface import \
28
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
+
30
+ from flash_attn.bert_padding import pad_input, unpad_input
31
+
32
+ has_flash_attn = True
33
+ except:
34
+ print('FlashAttention is not installed.')
35
+ has_flash_attn = False
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ class FlashAttention(nn.Module):
41
+ """Implement the scaled dot product attention with softmax.
42
+ Arguments
43
+ ---------
44
+ softmax_scale: The temperature to use for the softmax attention.
45
+ (default: 1/sqrt(d_keys) where d_keys is computed at
46
+ runtime)
47
+ attention_dropout: The dropout rate to apply to the attention
48
+ (default: 0.0)
49
+ """
50
+
51
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
52
+ super().__init__()
53
+ self.softmax_scale = softmax_scale
54
+ self.dropout_p = attention_dropout
55
+
56
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
57
+ max_s=None, need_weights=False):
58
+ """Implements the multihead softmax attention.
59
+ Arguments
60
+ ---------
61
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
62
+ if unpadded: (nnz, 3, h, d)
63
+ key_padding_mask: a bool tensor of shape (B, S)
64
+ """
65
+ assert not need_weights
66
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
67
+ assert qkv.is_cuda
68
+
69
+ if cu_seqlens is None:
70
+ batch_size = qkv.shape[0]
71
+ seqlen = qkv.shape[1]
72
+ if key_padding_mask is None:
73
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
74
+ max_s = seqlen
75
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
76
+ device=qkv.device)
77
+ output = flash_attn_unpadded_qkvpacked_func(
78
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
79
+ softmax_scale=self.softmax_scale, causal=causal
80
+ )
81
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
82
+ else:
83
+ nheads = qkv.shape[-2]
84
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
85
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
86
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
87
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
88
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
89
+ softmax_scale=self.softmax_scale, causal=causal
90
+ )
91
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
92
+ indices, batch_size, seqlen),
93
+ 'b s (h d) -> b s h d', h=nheads)
94
+ else:
95
+ assert max_s is not None
96
+ output = flash_attn_unpadded_qkvpacked_func(
97
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
98
+ softmax_scale=self.softmax_scale, causal=causal
99
+ )
100
+
101
+ return output, None
102
+
103
+
104
+ class InternRMSNorm(nn.Module):
105
+ def __init__(self, hidden_size, eps=1e-6):
106
+ super().__init__()
107
+ self.weight = nn.Parameter(torch.ones(hidden_size))
108
+ self.variance_epsilon = eps
109
+
110
+ def forward(self, hidden_states):
111
+ input_dtype = hidden_states.dtype
112
+ hidden_states = hidden_states.to(torch.float32)
113
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
114
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
115
+ return self.weight * hidden_states.to(input_dtype)
116
+
117
+
118
+ try:
119
+ from apex.normalization import FusedRMSNorm
120
+
121
+ InternRMSNorm = FusedRMSNorm # noqa
122
+
123
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
124
+ except ImportError:
125
+ # using the normal InternRMSNorm
126
+ pass
127
+ except Exception:
128
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
129
+ pass
130
+
131
+
132
+ NORM2FN = {
133
+ 'rms_norm': InternRMSNorm,
134
+ 'layer_norm': nn.LayerNorm,
135
+ }
136
+
137
+
138
+ class InternVisionEmbeddings(nn.Module):
139
+ def __init__(self, config: InternVisionConfig):
140
+ super().__init__()
141
+ self.config = config
142
+ self.embed_dim = config.hidden_size
143
+ self.image_size = config.image_size
144
+ self.patch_size = config.patch_size
145
+
146
+ self.class_embedding = nn.Parameter(
147
+ torch.randn(1, 1, self.embed_dim),
148
+ )
149
+
150
+ self.patch_embedding = nn.Conv2d(
151
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
152
+ )
153
+
154
+ self.num_patches = (self.image_size // self.patch_size) ** 2
155
+ self.num_positions = self.num_patches + 1
156
+
157
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
158
+
159
+ def _get_pos_embed(self, pos_embed, H, W):
160
+ target_dtype = pos_embed.dtype
161
+ pos_embed = pos_embed.float().reshape(
162
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
163
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
164
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
165
+ return pos_embed
166
+
167
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
168
+ target_dtype = self.patch_embedding.weight.dtype
169
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
170
+ batch_size, _, height, width = patch_embeds.shape
171
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
172
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
173
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
174
+ position_embedding = torch.cat([
175
+ self.position_embedding[:, :1, :],
176
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
177
+ ], dim=1)
178
+ embeddings = embeddings + position_embedding.to(target_dtype)
179
+ return embeddings
180
+
181
+
182
+ class InternAttention(nn.Module):
183
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
184
+
185
+ def __init__(self, config: InternVisionConfig):
186
+ super().__init__()
187
+ self.config = config
188
+ self.embed_dim = config.hidden_size
189
+ self.num_heads = config.num_attention_heads
190
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
191
+ if config.use_flash_attn and not has_flash_attn:
192
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
193
+ self.head_dim = self.embed_dim // self.num_heads
194
+ if self.head_dim * self.num_heads != self.embed_dim:
195
+ raise ValueError(
196
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
197
+ f' {self.num_heads}).'
198
+ )
199
+
200
+ self.scale = self.head_dim ** -0.5
201
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
202
+ self.attn_drop = nn.Dropout(config.attention_dropout)
203
+ self.proj_drop = nn.Dropout(config.dropout)
204
+
205
+ self.qk_normalization = config.qk_normalization
206
+
207
+ if self.qk_normalization:
208
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
209
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
210
+
211
+ if self.use_flash_attn:
212
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
213
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
214
+
215
+ def _naive_attn(self, x):
216
+ B, N, C = x.shape
217
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
218
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
219
+
220
+ if self.qk_normalization:
221
+ B_, H_, N_, D_ = q.shape
222
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
223
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
224
+
225
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
226
+ attn = attn.softmax(dim=-1)
227
+ attn = self.attn_drop(attn)
228
+
229
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
230
+ x = self.proj(x)
231
+ x = self.proj_drop(x)
232
+ return x
233
+
234
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
235
+ qkv = self.qkv(x)
236
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
237
+
238
+ if self.qk_normalization:
239
+ q, k, v = qkv.unbind(2)
240
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
241
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
242
+ qkv = torch.stack([q, k, v], dim=2)
243
+
244
+ context, _ = self.inner_attn(
245
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
246
+ )
247
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
248
+ outs = self.proj_drop(outs)
249
+ return outs
250
+
251
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
252
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
253
+ return x
254
+
255
+
256
+ class InternMLP(nn.Module):
257
+ def __init__(self, config: InternVisionConfig):
258
+ super().__init__()
259
+ self.config = config
260
+ self.act = ACT2FN[config.hidden_act]
261
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
262
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
263
+
264
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
265
+ hidden_states = self.fc1(hidden_states)
266
+ hidden_states = self.act(hidden_states)
267
+ hidden_states = self.fc2(hidden_states)
268
+ return hidden_states
269
+
270
+
271
+ class InternVisionEncoderLayer(nn.Module):
272
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
273
+ super().__init__()
274
+ self.embed_dim = config.hidden_size
275
+ self.intermediate_size = config.intermediate_size
276
+ self.norm_type = config.norm_type
277
+
278
+ self.attn = InternAttention(config)
279
+ self.mlp = InternMLP(config)
280
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
281
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
282
+
283
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
284
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
285
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
286
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
287
+
288
+ def forward(
289
+ self,
290
+ hidden_states: torch.Tensor,
291
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
292
+ """
293
+ Args:
294
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
295
+ """
296
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
297
+
298
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
299
+
300
+ return hidden_states
301
+
302
+
303
+ class InternVisionEncoder(nn.Module):
304
+ """
305
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
306
+ [`InternEncoderLayer`].
307
+
308
+ Args:
309
+ config (`InternConfig`):
310
+ The corresponding vision configuration for the `InternEncoder`.
311
+ """
312
+
313
+ def __init__(self, config: InternVisionConfig):
314
+ super().__init__()
315
+ self.config = config
316
+ # stochastic depth decay rule
317
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
318
+ self.layers = nn.ModuleList([
319
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
320
+ self.gradient_checkpointing = True
321
+
322
+ def forward(
323
+ self,
324
+ inputs_embeds,
325
+ output_hidden_states: Optional[bool] = None,
326
+ return_dict: Optional[bool] = None,
327
+ ) -> Union[Tuple, BaseModelOutput]:
328
+ r"""
329
+ Args:
330
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
331
+ Embedded representation of the inputs. Should be float, not int tokens.
332
+ output_hidden_states (`bool`, *optional*):
333
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
334
+ for more detail.
335
+ return_dict (`bool`, *optional*):
336
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
337
+ """
338
+ output_hidden_states = (
339
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
340
+ )
341
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
342
+
343
+ encoder_states = () if output_hidden_states else None
344
+ hidden_states = inputs_embeds
345
+
346
+ for idx, encoder_layer in enumerate(self.layers):
347
+ if output_hidden_states:
348
+ encoder_states = encoder_states + (hidden_states,)
349
+ if self.gradient_checkpointing and self.training:
350
+ layer_outputs = torch.utils.checkpoint.checkpoint(
351
+ encoder_layer,
352
+ hidden_states)
353
+ else:
354
+ layer_outputs = encoder_layer(
355
+ hidden_states,
356
+ )
357
+ hidden_states = layer_outputs
358
+
359
+ if output_hidden_states:
360
+ encoder_states = encoder_states + (hidden_states,)
361
+
362
+ if not return_dict:
363
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
364
+ return BaseModelOutput(
365
+ last_hidden_state=hidden_states, hidden_states=encoder_states
366
+ )
367
+
368
+
369
+ class InternVisionModel(PreTrainedModel):
370
+ main_input_name = 'pixel_values'
371
+ _supports_flash_attn_2 = True
372
+ config_class = InternVisionConfig
373
+ _no_split_modules = ['InternVisionEncoderLayer']
374
+
375
+ def __init__(self, config: InternVisionConfig):
376
+ super().__init__(config)
377
+ self.config = config
378
+
379
+ self.embeddings = InternVisionEmbeddings(config)
380
+ self.encoder = InternVisionEncoder(config)
381
+
382
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
383
+ pos_emb = self.embeddings.position_embedding
384
+ _, num_positions, embed_dim = pos_emb.shape
385
+ cls_emb = pos_emb[:, :1, :]
386
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
387
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
388
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
389
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
390
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
391
+ self.embeddings.image_size = new_size
392
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
393
+
394
+ def get_input_embeddings(self):
395
+ return self.embeddings
396
+
397
+ def forward(
398
+ self,
399
+ pixel_values: Optional[torch.FloatTensor] = None,
400
+ output_hidden_states: Optional[bool] = None,
401
+ return_dict: Optional[bool] = None,
402
+ pixel_embeds: Optional[torch.FloatTensor] = None,
403
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
404
+ output_hidden_states = (
405
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
406
+ )
407
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
408
+
409
+ if pixel_values is None and pixel_embeds is None:
410
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
411
+
412
+ if pixel_embeds is not None:
413
+ hidden_states = pixel_embeds
414
+ else:
415
+ if len(pixel_values.shape) == 4:
416
+ hidden_states = self.embeddings(pixel_values)
417
+ else:
418
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
419
+ encoder_outputs = self.encoder(
420
+ inputs_embeds=hidden_states,
421
+ output_hidden_states=output_hidden_states,
422
+ return_dict=return_dict,
423
+ )
424
+ last_hidden_state = encoder_outputs.last_hidden_state
425
+ pooled_output = last_hidden_state[:, 0, :]
426
+
427
+ if not return_dict:
428
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
429
+
430
+ return BaseModelOutputWithPooling(
431
+ last_hidden_state=last_hidden_state,
432
+ pooler_output=pooled_output,
433
+ hidden_states=encoder_outputs.hidden_states,
434
+ attentions=encoder_outputs.attentions,
435
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+ _supports_flash_attn_2 = True
713
+
714
+ def _init_weights(self, module):
715
+ std = self.config.initializer_range
716
+ if isinstance(module, nn.Linear):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.bias is not None:
719
+ module.bias.data.zero_()
720
+ elif isinstance(module, nn.Embedding):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.padding_idx is not None:
723
+ module.weight.data[module.padding_idx].zero_()
724
+
725
+
726
+ InternLM2_INPUTS_DOCSTRING = r"""
727
+ Args:
728
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
729
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
730
+ it.
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ [What are input IDs?](../glossary#input-ids)
736
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
738
+
739
+ - 1 for tokens that are **not masked**,
740
+ - 0 for tokens that are **masked**.
741
+
742
+ [What are attention masks?](../glossary#attention-mask)
743
+
744
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
745
+ [`PreTrainedTokenizer.__call__`] for details.
746
+
747
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
748
+ `past_key_values`).
749
+
750
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
751
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
752
+ information on the default strategy.
753
+
754
+ - 1 indicates the head is **not masked**,
755
+ - 0 indicates the head is **masked**.
756
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
758
+ config.n_positions - 1]`.
759
+
760
+ [What are position IDs?](../glossary#position-ids)
761
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
762
+ when `config.use_cache=True`):
763
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
764
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
765
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
766
+
767
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
768
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ """
789
+
790
+
791
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
792
+ @add_start_docstrings(
793
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
794
+ InternLM2_START_DOCSTRING,
795
+ )
796
+ class InternLM2Model(InternLM2PreTrainedModel):
797
+ """
798
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
799
+
800
+ Args:
801
+ config: InternLM2Config
802
+ """
803
+
804
+ _auto_class = 'AutoModel'
805
+
806
+ def __init__(self, config: InternLM2Config):
807
+ super().__init__(config)
808
+ self.padding_idx = config.pad_token_id
809
+ self.vocab_size = config.vocab_size
810
+ self.config = config
811
+ if not has_flash_attn:
812
+ self.config.attn_implementation = 'eager'
813
+ print('Warning: Flash attention is not available, using eager attention instead.')
814
+
815
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
816
+
817
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
818
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
819
+
820
+ self.gradient_checkpointing = False
821
+ # Initialize weights and apply final processing
822
+ self.post_init()
823
+
824
+ def get_input_embeddings(self):
825
+ return self.tok_embeddings
826
+
827
+ def set_input_embeddings(self, value):
828
+ self.tok_embeddings = value
829
+
830
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
831
+ # create causal mask
832
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
833
+ combined_attention_mask = None
834
+ if input_shape[-1] > 1:
835
+ combined_attention_mask = _make_causal_mask(
836
+ input_shape,
837
+ inputs_embeds.dtype,
838
+ device=inputs_embeds.device,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+
842
+ if attention_mask is not None:
843
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
844
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
845
+ inputs_embeds.device
846
+ )
847
+ combined_attention_mask = (
848
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
849
+ )
850
+
851
+ return combined_attention_mask
852
+
853
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
854
+ def forward(
855
+ self,
856
+ input_ids: torch.LongTensor = None,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
860
+ inputs_embeds: Optional[torch.FloatTensor] = None,
861
+ use_cache: Optional[bool] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
866
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
867
+ output_hidden_states = (
868
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
869
+ )
870
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
871
+
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+
874
+ if self.config.attn_implementation == 'flash_attention_2':
875
+ _import_flash_attn()
876
+
877
+ # retrieve input_ids and inputs_embeds
878
+ if input_ids is not None and inputs_embeds is not None:
879
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
880
+ elif input_ids is not None:
881
+ batch_size, seq_length = input_ids.shape[:2]
882
+ elif inputs_embeds is not None:
883
+ batch_size, seq_length = inputs_embeds.shape[:2]
884
+ else:
885
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
886
+
887
+ seq_length_with_past = seq_length
888
+ past_key_values_length = 0
889
+ if past_key_values is not None:
890
+ past_key_values_length = past_key_values[0][0].shape[2]
891
+ seq_length_with_past = seq_length_with_past + past_key_values_length
892
+
893
+ if position_ids is None:
894
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
895
+ position_ids = torch.arange(
896
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
897
+ )
898
+ position_ids = position_ids.unsqueeze(0)
899
+
900
+ if inputs_embeds is None:
901
+ inputs_embeds = self.tok_embeddings(input_ids)
902
+
903
+ if self.config.attn_implementation == 'flash_attention_2':
904
+ # 2d mask is passed through the layers
905
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
906
+ else:
907
+ if attention_mask is None:
908
+ attention_mask = torch.ones(
909
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
910
+ )
911
+ attention_mask = self._prepare_decoder_attention_mask(
912
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
913
+ )
914
+
915
+ # embed positions
916
+ hidden_states = inputs_embeds
917
+
918
+ if self.gradient_checkpointing and self.training:
919
+ if use_cache:
920
+ logger.warning_once(
921
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
922
+ )
923
+ use_cache = False
924
+
925
+ # decoder layers
926
+ all_hidden_states = () if output_hidden_states else None
927
+ all_self_attns = () if output_attentions else None
928
+ next_decoder_cache = () if use_cache else None
929
+
930
+ for idx, decoder_layer in enumerate(self.layers):
931
+ if output_hidden_states:
932
+ all_hidden_states += (hidden_states,)
933
+
934
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+
938
+ def create_custom_forward(module):
939
+ def custom_forward(*inputs):
940
+ # None for past_key_value
941
+ return module(*inputs, output_attentions, None)
942
+
943
+ return custom_forward
944
+
945
+ layer_outputs = torch.utils.checkpoint.checkpoint(
946
+ create_custom_forward(decoder_layer),
947
+ hidden_states,
948
+ attention_mask,
949
+ position_ids,
950
+ None,
951
+ )
952
+ else:
953
+ layer_outputs = decoder_layer(
954
+ hidden_states,
955
+ attention_mask=attention_mask,
956
+ position_ids=position_ids,
957
+ past_key_value=past_key_value,
958
+ output_attentions=output_attentions,
959
+ use_cache=use_cache,
960
+ )
961
+
962
+ hidden_states = layer_outputs[0]
963
+
964
+ if use_cache:
965
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
966
+
967
+ if output_attentions:
968
+ all_self_attns += (layer_outputs[1],)
969
+
970
+ hidden_states = self.norm(hidden_states)
971
+
972
+ # add hidden states from the last decoder layer
973
+ if output_hidden_states:
974
+ all_hidden_states += (hidden_states,)
975
+
976
+ next_cache = next_decoder_cache if use_cache else None
977
+ if not return_dict:
978
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
979
+ return BaseModelOutputWithPast(
980
+ last_hidden_state=hidden_states,
981
+ past_key_values=next_cache,
982
+ hidden_states=all_hidden_states,
983
+ attentions=all_self_attns,
984
+ )
985
+
986
+
987
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
988
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
989
+ _auto_class = 'AutoModelForCausalLM'
990
+
991
+ _tied_weights_keys = ['output.weight']
992
+
993
+ def __init__(self, config):
994
+ super().__init__(config)
995
+ self.model = InternLM2Model(config)
996
+ self.vocab_size = config.vocab_size
997
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
998
+
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_input_embeddings(self):
1003
+ return self.model.tok_embeddings
1004
+
1005
+ def set_input_embeddings(self, value):
1006
+ self.model.tok_embeddings = value
1007
+
1008
+ def get_output_embeddings(self):
1009
+ return self.output
1010
+
1011
+ def set_output_embeddings(self, new_embeddings):
1012
+ self.output = new_embeddings
1013
+
1014
+ def set_decoder(self, decoder):
1015
+ self.model = decoder
1016
+
1017
+ def get_decoder(self):
1018
+ return self.model
1019
+
1020
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1021
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1022
+ def forward(
1023
+ self,
1024
+ input_ids: torch.LongTensor = None,
1025
+ attention_mask: Optional[torch.Tensor] = None,
1026
+ position_ids: Optional[torch.LongTensor] = None,
1027
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1028
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1029
+ labels: Optional[torch.LongTensor] = None,
1030
+ use_cache: Optional[bool] = None,
1031
+ output_attentions: Optional[bool] = None,
1032
+ output_hidden_states: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1035
+ r"""
1036
+ Args:
1037
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1038
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1039
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1040
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1048
+
1049
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1051
+
1052
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1059
+ ```"""
1060
+
1061
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1062
+ output_hidden_states = (
1063
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1064
+ )
1065
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1066
+
1067
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1068
+ outputs = self.model(
1069
+ input_ids=input_ids,
1070
+ attention_mask=attention_mask,
1071
+ position_ids=position_ids,
1072
+ past_key_values=past_key_values,
1073
+ inputs_embeds=inputs_embeds,
1074
+ use_cache=use_cache,
1075
+ output_attentions=output_attentions,
1076
+ output_hidden_states=output_hidden_states,
1077
+ return_dict=return_dict,
1078
+ )
1079
+
1080
+ hidden_states = outputs[0]
1081
+ logits = self.output(hidden_states)
1082
+ logits = logits.float()
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ # Shift so that tokens < n predict n
1087
+ shift_logits = logits[..., :-1, :].contiguous()
1088
+ shift_labels = labels[..., 1:].contiguous()
1089
+ # Flatten the tokens
1090
+ loss_fct = CrossEntropyLoss()
1091
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1092
+ shift_labels = shift_labels.view(-1)
1093
+ # Enable model parallelism
1094
+ shift_labels = shift_labels.to(shift_logits.device)
1095
+ loss = loss_fct(shift_logits, shift_labels)
1096
+
1097
+ if not return_dict:
1098
+ output = (logits,) + outputs[1:]
1099
+ return (loss,) + output if loss is not None else output
1100
+
1101
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1102
+ output = CausalLMOutputWithPast(
1103
+ loss=loss,
1104
+ logits=logits,
1105
+ past_key_values=outputs.past_key_values,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+ output['logits'] = output['logits'].to(device)
1110
+ return output
1111
+
1112
+ def prepare_inputs_for_generation(
1113
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1114
+ ):
1115
+ if past_key_values is not None:
1116
+ past_length = past_key_values[0][0].shape[2]
1117
+
1118
+ # Some generation methods already pass only the last input ID
1119
+ if input_ids.shape[1] > past_length:
1120
+ remove_prefix_length = past_length
1121
+ else:
1122
+ # Default to old behavior: keep only final ID
1123
+ remove_prefix_length = input_ids.shape[1] - 1
1124
+
1125
+ input_ids = input_ids[:, remove_prefix_length:]
1126
+
1127
+ position_ids = kwargs.get('position_ids', None)
1128
+ if attention_mask is not None and position_ids is None:
1129
+ # create position_ids on the fly for batch generation
1130
+ position_ids = attention_mask.long().cumsum(-1) - 1
1131
+ position_ids.masked_fill_(attention_mask == 0, 1)
1132
+ if past_key_values:
1133
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1134
+
1135
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1136
+ if inputs_embeds is not None and past_key_values is None:
1137
+ model_inputs = {'inputs_embeds': inputs_embeds}
1138
+ else:
1139
+ model_inputs = {'input_ids': input_ids}
1140
+
1141
+ model_inputs.update(
1142
+ {
1143
+ 'position_ids': position_ids,
1144
+ 'past_key_values': past_key_values,
1145
+ 'use_cache': kwargs.get('use_cache'),
1146
+ 'attention_mask': attention_mask,
1147
+ }
1148
+ )
1149
+ return model_inputs
1150
+
1151
+ @staticmethod
1152
+ def _reorder_cache(past_key_values, beam_idx):
1153
+ reordered_past = ()
1154
+ for layer_past in past_key_values:
1155
+ reordered_past += (
1156
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1157
+ )
1158
+ return reordered_past
1159
+
1160
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1161
+ if tokenizer.add_bos_token:
1162
+ prompt = ''
1163
+ else:
1164
+ prompt = tokenizer.bos_token
1165
+ if meta_instruction:
1166
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1167
+ for record in history:
1168
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1169
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1170
+ return tokenizer([prompt], return_tensors='pt')
1171
+
1172
+ @torch.no_grad()
1173
+ def chat(
1174
+ self,
1175
+ tokenizer,
1176
+ query: str,
1177
+ history: List[Tuple[str, str]] = [],
1178
+ streamer: Optional[BaseStreamer] = None,
1179
+ max_new_tokens: int = 1024,
1180
+ do_sample: bool = True,
1181
+ temperature: float = 0.8,
1182
+ top_p: float = 0.8,
1183
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1184
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1185
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1186
+ **kwargs,
1187
+ ):
1188
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1189
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1190
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1191
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1192
+ outputs = self.generate(
1193
+ **inputs,
1194
+ streamer=streamer,
1195
+ max_new_tokens=max_new_tokens,
1196
+ do_sample=do_sample,
1197
+ temperature=temperature,
1198
+ top_p=top_p,
1199
+ eos_token_id=eos_token_id,
1200
+ **kwargs,
1201
+ )
1202
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1203
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1204
+ response = response.split('<|im_end|>')[0]
1205
+ history = history + [(query, response)]
1206
+ return response, history
1207
+
1208
+ @torch.no_grad()
1209
+ def stream_chat(
1210
+ self,
1211
+ tokenizer,
1212
+ query: str,
1213
+ history: List[Tuple[str, str]] = [],
1214
+ max_new_tokens: int = 1024,
1215
+ do_sample: bool = True,
1216
+ temperature: float = 0.8,
1217
+ top_p: float = 0.8,
1218
+ **kwargs,
1219
+ ):
1220
+ """
1221
+ Return a generator in format: (response, history)
1222
+ Eg.
1223
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1224
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1225
+ """
1226
+ if BaseStreamer is None:
1227
+ raise ModuleNotFoundError(
1228
+ 'The version of `transformers` is too low. Please make sure '
1229
+ 'that you have installed `transformers>=4.28.0`.'
1230
+ )
1231
+
1232
+ response_queue = queue.Queue(maxsize=20)
1233
+
1234
+ class ChatStreamer(BaseStreamer):
1235
+ def __init__(self, tokenizer) -> None:
1236
+ super().__init__()
1237
+ self.tokenizer = tokenizer
1238
+ self.queue = response_queue
1239
+ self.query = query
1240
+ self.history = history
1241
+ self.response = ''
1242
+ self.cache = []
1243
+ self.received_inputs = False
1244
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1245
+
1246
+ def put(self, value):
1247
+ if len(value.shape) > 1 and value.shape[0] > 1:
1248
+ raise ValueError('ChatStreamer only supports batch size 1')
1249
+ elif len(value.shape) > 1:
1250
+ value = value[0]
1251
+
1252
+ if not self.received_inputs:
1253
+ # The first received value is input_ids, ignore here
1254
+ self.received_inputs = True
1255
+ return
1256
+
1257
+ self.cache.extend(value.tolist())
1258
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1259
+ if token.strip() != '<|im_end|>':
1260
+ self.response = self.response + token
1261
+ history = self.history + [(self.query, self.response)]
1262
+ self.queue.put((self.response, history))
1263
+ self.cache = []
1264
+ else:
1265
+ self.end()
1266
+
1267
+ def end(self):
1268
+ self.queue.put(None)
1269
+
1270
+ def stream_producer():
1271
+ return self.chat(
1272
+ tokenizer=tokenizer,
1273
+ query=query,
1274
+ streamer=ChatStreamer(tokenizer=tokenizer),
1275
+ history=history,
1276
+ max_new_tokens=max_new_tokens,
1277
+ do_sample=do_sample,
1278
+ temperature=temperature,
1279
+ top_p=top_p,
1280
+ **kwargs,
1281
+ )
1282
+
1283
+ def consumer():
1284
+ producer = threading.Thread(target=stream_producer)
1285
+ producer.start()
1286
+ while True:
1287
+ res = response_queue.get()
1288
+ if res is None:
1289
+ return
1290
+ yield res
1291
+
1292
+ return consumer()
1293
+
1294
+
1295
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1296
+ @add_start_docstrings(
1297
+ """
1298
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1299
+
1300
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1301
+ as other causal models (e.g. GPT-2) do.
1302
+
1303
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1304
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1305
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1306
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1307
+ each row of the batch).
1308
+ """,
1309
+ InternLM2_START_DOCSTRING,
1310
+ )
1311
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ self.num_labels = config.num_labels
1315
+ self.model = InternLM2Model(config)
1316
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1317
+
1318
+ # Initialize weights and apply final processing
1319
+ self.post_init()
1320
+
1321
+ def get_input_embeddings(self):
1322
+ return self.model.tok_embeddings
1323
+
1324
+ def set_input_embeddings(self, value):
1325
+ self.model.tok_embeddings = value
1326
+
1327
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1328
+ def forward(
1329
+ self,
1330
+ input_ids: torch.LongTensor = None,
1331
+ attention_mask: Optional[torch.Tensor] = None,
1332
+ position_ids: Optional[torch.LongTensor] = None,
1333
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1335
+ labels: Optional[torch.LongTensor] = None,
1336
+ use_cache: Optional[bool] = None,
1337
+ output_attentions: Optional[bool] = None,
1338
+ output_hidden_states: Optional[bool] = None,
1339
+ return_dict: Optional[bool] = None,
1340
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1341
+ r"""
1342
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1343
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1344
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1345
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1346
+ """
1347
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1348
+
1349
+ transformer_outputs = self.model(
1350
+ input_ids,
1351
+ attention_mask=attention_mask,
1352
+ position_ids=position_ids,
1353
+ past_key_values=past_key_values,
1354
+ inputs_embeds=inputs_embeds,
1355
+ use_cache=use_cache,
1356
+ output_attentions=output_attentions,
1357
+ output_hidden_states=output_hidden_states,
1358
+ return_dict=return_dict,
1359
+ )
1360
+ hidden_states = transformer_outputs[0]
1361
+ logits = self.score(hidden_states)
1362
+
1363
+ if input_ids is not None:
1364
+ batch_size = input_ids.shape[0]
1365
+ else:
1366
+ batch_size = inputs_embeds.shape[0]
1367
+
1368
+ if self.config.pad_token_id is None and batch_size != 1:
1369
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1370
+ if self.config.pad_token_id is None:
1371
+ sequence_lengths = -1
1372
+ else:
1373
+ if input_ids is not None:
1374
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1375
+ logits.device
1376
+ )
1377
+ else:
1378
+ sequence_lengths = -1
1379
+
1380
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1381
+
1382
+ loss = None
1383
+ if labels is not None:
1384
+ labels = labels.to(logits.device)
1385
+ if self.config.problem_type is None:
1386
+ if self.num_labels == 1:
1387
+ self.config.problem_type = 'regression'
1388
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1389
+ self.config.problem_type = 'single_label_classification'
1390
+ else:
1391
+ self.config.problem_type = 'multi_label_classification'
1392
+
1393
+ if self.config.problem_type == 'regression':
1394
+ loss_fct = MSELoss()
1395
+ if self.num_labels == 1:
1396
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1397
+ else:
1398
+ loss = loss_fct(pooled_logits, labels)
1399
+ elif self.config.problem_type == 'single_label_classification':
1400
+ loss_fct = CrossEntropyLoss()
1401
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1402
+ elif self.config.problem_type == 'multi_label_classification':
1403
+ loss_fct = BCEWithLogitsLoss()
1404
+ loss = loss_fct(pooled_logits, labels)
1405
+ if not return_dict:
1406
+ output = (pooled_logits,) + transformer_outputs[1:]
1407
+ return ((loss,) + output) if loss is not None else output
1408
+
1409
+ return SequenceClassifierOutputWithPast(
1410
+ loss=loss,
1411
+ logits=pooled_logits,
1412
+ past_key_values=transformer_outputs.past_key_values,
1413
+ hidden_states=transformer_outputs.hidden_states,
1414
+ attentions=transformer_outputs.attentions,
1415
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ import transformers
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ LlamaTokenizer)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from .conversation import get_conv_template
21
+ from .modeling_intern_vit import InternVisionModel
22
+ from .modeling_internlm2 import InternLM2ForCausalLM
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ def version_cmp(v1, v2, op='eq'):
28
+ import operator
29
+
30
+ from packaging import version
31
+ op_func = getattr(operator, op)
32
+ return op_func(version.parse(v1), version.parse(v2))
33
+
34
+
35
+ class InternVLChatModel(PreTrainedModel):
36
+ config_class = InternVLChatConfig
37
+ main_input_name = 'pixel_values'
38
+ _supports_flash_attn_2 = True
39
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
40
+
41
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
42
+ super().__init__(config)
43
+
44
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
45
+ image_size = config.force_image_size or config.vision_config.image_size
46
+ patch_size = config.vision_config.patch_size
47
+ self.patch_size = patch_size
48
+ self.select_layer = config.select_layer
49
+ self.template = config.template
50
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
51
+ self.downsample_ratio = config.downsample_ratio
52
+ self.ps_version = config.ps_version
53
+
54
+ logger.info(f'num_image_token: {self.num_image_token}')
55
+ logger.info(f'ps_version: {self.ps_version}')
56
+ if vision_model is not None:
57
+ self.vision_model = vision_model
58
+ else:
59
+ self.vision_model = InternVisionModel(config.vision_config)
60
+ if language_model is not None:
61
+ self.language_model = language_model
62
+ else:
63
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
64
+ self.language_model = LlamaForCausalLM(config.llm_config)
65
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
66
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
67
+ else:
68
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
69
+
70
+ vit_hidden_size = config.vision_config.hidden_size
71
+ llm_hidden_size = config.llm_config.hidden_size
72
+
73
+ self.mlp1 = nn.Sequential(
74
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
75
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
76
+ nn.GELU(),
77
+ nn.Linear(llm_hidden_size, llm_hidden_size)
78
+ )
79
+
80
+ self.img_context_token_id = None
81
+ self.conv_template = get_conv_template(self.template)
82
+ self.system_message = self.conv_template.system_message
83
+
84
+ def forward(
85
+ self,
86
+ pixel_values: torch.FloatTensor,
87
+ input_ids: torch.LongTensor = None,
88
+ attention_mask: Optional[torch.Tensor] = None,
89
+ position_ids: Optional[torch.LongTensor] = None,
90
+ image_flags: Optional[torch.LongTensor] = None,
91
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
92
+ labels: Optional[torch.LongTensor] = None,
93
+ use_cache: Optional[bool] = None,
94
+ output_attentions: Optional[bool] = None,
95
+ output_hidden_states: Optional[bool] = None,
96
+ return_dict: Optional[bool] = None,
97
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
98
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
99
+
100
+ image_flags = image_flags.squeeze(-1)
101
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
102
+
103
+ vit_embeds = self.extract_feature(pixel_values)
104
+ vit_embeds = vit_embeds[image_flags == 1]
105
+ vit_batch_size = pixel_values.shape[0]
106
+
107
+ B, N, C = input_embeds.shape
108
+ input_embeds = input_embeds.reshape(B * N, C)
109
+
110
+ if torch.distributed.get_rank() == 0:
111
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
112
+
113
+ input_ids = input_ids.reshape(B * N)
114
+ selected = (input_ids == self.img_context_token_id)
115
+ try:
116
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
117
+ except Exception as e:
118
+ vit_embeds = vit_embeds.reshape(-1, C)
119
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
120
+ f'vit_embeds.shape={vit_embeds.shape}')
121
+ n_token = selected.sum()
122
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
123
+
124
+ input_embeds = input_embeds.reshape(B, N, C)
125
+
126
+ outputs = self.language_model(
127
+ inputs_embeds=input_embeds,
128
+ attention_mask=attention_mask,
129
+ position_ids=position_ids,
130
+ past_key_values=past_key_values,
131
+ use_cache=use_cache,
132
+ output_attentions=output_attentions,
133
+ output_hidden_states=output_hidden_states,
134
+ return_dict=return_dict,
135
+ )
136
+ logits = outputs.logits
137
+
138
+ loss = None
139
+ if labels is not None:
140
+ # Shift so that tokens < n predict n
141
+ shift_logits = logits[..., :-1, :].contiguous()
142
+ shift_labels = labels[..., 1:].contiguous()
143
+ # Flatten the tokens
144
+ loss_fct = CrossEntropyLoss()
145
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
146
+ shift_labels = shift_labels.view(-1)
147
+ # Enable model parallelism
148
+ shift_labels = shift_labels.to(shift_logits.device)
149
+ loss = loss_fct(shift_logits, shift_labels)
150
+
151
+ if not return_dict:
152
+ output = (logits,) + outputs[1:]
153
+ return (loss,) + output if loss is not None else output
154
+
155
+ return CausalLMOutputWithPast(
156
+ loss=loss,
157
+ logits=logits,
158
+ past_key_values=outputs.past_key_values,
159
+ hidden_states=outputs.hidden_states,
160
+ attentions=outputs.attentions,
161
+ )
162
+
163
+ def pixel_shuffle(self, x, scale_factor=0.5):
164
+ n, w, h, c = x.size()
165
+ # N, W, H, C --> N, W, H * scale, C // scale
166
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
167
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
168
+ x = x.permute(0, 2, 1, 3).contiguous()
169
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
170
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
171
+ int(c / (scale_factor * scale_factor)))
172
+ if self.ps_version == 'v1':
173
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
174
+ 'which results in a transposed image.')
175
+ else:
176
+ x = x.permute(0, 2, 1, 3).contiguous()
177
+ return x
178
+
179
+ def extract_feature(self, pixel_values):
180
+ if self.select_layer == -1:
181
+ vit_embeds = self.vision_model(
182
+ pixel_values=pixel_values,
183
+ output_hidden_states=False,
184
+ return_dict=True).last_hidden_state
185
+ else:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=True,
189
+ return_dict=True).hidden_states[self.select_layer]
190
+ vit_embeds = vit_embeds[:, 1:, :]
191
+
192
+ h = w = int(vit_embeds.shape[1] ** 0.5)
193
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
194
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
195
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
196
+ vit_embeds = self.mlp1(vit_embeds)
197
+ return vit_embeds
198
+
199
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
200
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
201
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
202
+ if history is not None or return_history:
203
+ print('Now multi-turn chat is not supported in batch_chat.')
204
+ raise NotImplementedError
205
+
206
+ if image_counts is not None:
207
+ num_patches_list = image_counts
208
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
209
+
210
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
211
+ self.img_context_token_id = img_context_token_id
212
+
213
+ if verbose and pixel_values is not None:
214
+ image_bs = pixel_values.shape[0]
215
+ print(f'dynamic ViT batch size: {image_bs}')
216
+
217
+ queries = []
218
+ for idx, num_patches in enumerate(num_patches_list):
219
+ question = questions[idx]
220
+ if pixel_values is not None and '<image>' not in question:
221
+ question = '<image>\n' + question
222
+ template = get_conv_template(self.template)
223
+ template.append_message(template.roles[0], question)
224
+ template.append_message(template.roles[1], None)
225
+ query = template.get_prompt()
226
+
227
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
228
+ query = query.replace('<image>', image_tokens, 1)
229
+ queries.append(query)
230
+
231
+ tokenizer.padding_side = 'left'
232
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
233
+ input_ids = model_inputs['input_ids'].cuda()
234
+ attention_mask = model_inputs['attention_mask'].cuda()
235
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
236
+ generation_config['eos_token_id'] = eos_token_id
237
+ generation_output = self.generate(
238
+ pixel_values=pixel_values,
239
+ input_ids=input_ids,
240
+ attention_mask=attention_mask,
241
+ **generation_config
242
+ )
243
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
244
+ responses = [response.split(template.sep)[0].strip() for response in responses]
245
+ return responses
246
+
247
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
248
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
249
+ verbose=False):
250
+
251
+ if history is None and pixel_values is not None and '<image>' not in question:
252
+ question = '<image>\n' + question
253
+
254
+ if num_patches_list is None:
255
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
256
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
257
+
258
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
259
+ self.img_context_token_id = img_context_token_id
260
+
261
+ template = get_conv_template(self.template)
262
+ template.system_message = self.system_message
263
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
264
+
265
+ history = [] if history is None else history
266
+ for (old_question, old_answer) in history:
267
+ template.append_message(template.roles[0], old_question)
268
+ template.append_message(template.roles[1], old_answer)
269
+ template.append_message(template.roles[0], question)
270
+ template.append_message(template.roles[1], None)
271
+ query = template.get_prompt()
272
+
273
+ if verbose and pixel_values is not None:
274
+ image_bs = pixel_values.shape[0]
275
+ print(f'dynamic ViT batch size: {image_bs}')
276
+
277
+ for num_patches in num_patches_list:
278
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
279
+ query = query.replace('<image>', image_tokens, 1)
280
+
281
+ model_inputs = tokenizer(query, return_tensors='pt')
282
+ input_ids = model_inputs['input_ids'].cuda()
283
+ attention_mask = model_inputs['attention_mask'].cuda()
284
+ generation_config['eos_token_id'] = eos_token_id
285
+ generation_output = self.generate(
286
+ pixel_values=pixel_values,
287
+ input_ids=input_ids,
288
+ attention_mask=attention_mask,
289
+ **generation_config
290
+ )
291
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
292
+ response = response.split(template.sep)[0].strip()
293
+ history.append((question, response))
294
+ if return_history:
295
+ return response, history
296
+ else:
297
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
298
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
299
+ if verbose:
300
+ print(query_to_print, response)
301
+ return response
302
+
303
+ @torch.no_grad()
304
+ def generate(
305
+ self,
306
+ pixel_values: Optional[torch.FloatTensor] = None,
307
+ input_ids: Optional[torch.FloatTensor] = None,
308
+ attention_mask: Optional[torch.LongTensor] = None,
309
+ visual_features: Optional[torch.FloatTensor] = None,
310
+ generation_config: Optional[GenerationConfig] = None,
311
+ output_hidden_states: Optional[bool] = None,
312
+ return_dict: Optional[bool] = None,
313
+ **generate_kwargs,
314
+ ) -> torch.LongTensor:
315
+
316
+ assert self.img_context_token_id is not None
317
+ if pixel_values is not None:
318
+ if visual_features is not None:
319
+ vit_embeds = visual_features
320
+ else:
321
+ vit_embeds = self.extract_feature(pixel_values)
322
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
323
+ B, N, C = input_embeds.shape
324
+ input_embeds = input_embeds.reshape(B * N, C)
325
+
326
+ input_ids = input_ids.reshape(B * N)
327
+ selected = (input_ids == self.img_context_token_id)
328
+ assert selected.sum() != 0
329
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
330
+
331
+ input_embeds = input_embeds.reshape(B, N, C)
332
+ else:
333
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
334
+
335
+ outputs = self.language_model.generate(
336
+ inputs_embeds=input_embeds,
337
+ attention_mask=attention_mask,
338
+ generation_config=generation_config,
339
+ output_hidden_states=output_hidden_states,
340
+ return_dict=return_dict,
341
+ use_cache=True,
342
+ **generate_kwargs,
343
+ )
344
+
345
+ return outputs
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<img>",
4
+ "</img>",
5
+ "<IMG_CONTEXT>",
6
+ "<quad>",
7
+ "</quad>",
8
+ "<ref>",
9
+ "</ref>",
10
+ "<box>",
11
+ "</box>"
12
+ ],
13
+ "bos_token": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "pad_token": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "unk_token": {
35
+ "content": "<unk>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<img>",
150
+ "</img>",
151
+ "<IMG_CONTEXT>",
152
+ "<quad>",
153
+ "</quad>",
154
+ "<ref>",
155
+ "</ref>",
156
+ "<box>",
157
+ "</box>"
158
+ ],
159
+ "auto_map": {
160
+ "AutoTokenizer": [
161
+ "tokenization_internlm2.InternLM2Tokenizer",
162
+ null
163
+ ]
164
+ },
165
+ "bos_token": "<s>",
166
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
167
+ "clean_up_tokenization_spaces": false,
168
+ "eos_token": "</s>",
169
+ "model_max_length": 4096,
170
+ "pad_token": "</s>",
171
+ "tokenizer_class": "InternLM2Tokenizer",
172
+ "unk_token": "<unk>"
173
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.1755684873563876,
4
+ "train_runtime": 47161.9361,
5
+ "train_samples": 85997,
6
+ "train_samples_per_second": 1.823,
7
+ "train_steps_per_second": 0.014
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,4056 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9986976744186047,
5
+ "eval_steps": 500,
6
+ "global_step": 671,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 1.4084,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 9.523809523809525e-07,
20
+ "loss": 1.3285,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 1.904761904761905e-06,
26
+ "loss": 1.3301,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.8571428571428573e-06,
32
+ "loss": 1.3048,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3.80952380952381e-06,
38
+ "loss": 1.2844,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.761904761904762e-06,
44
+ "loss": 1.2776,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 5.7142857142857145e-06,
50
+ "loss": 1.2673,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 6.666666666666667e-06,
56
+ "loss": 1.2424,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 7.61904761904762e-06,
62
+ "loss": 1.2499,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.01,
67
+ "learning_rate": 8.571428571428571e-06,
68
+ "loss": 1.2529,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 9.523809523809525e-06,
74
+ "loss": 1.279,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 1.0476190476190477e-05,
80
+ "loss": 1.271,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 1.1428571428571429e-05,
86
+ "loss": 1.1913,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 1.2380952380952383e-05,
92
+ "loss": 1.2517,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 1.3333333333333333e-05,
98
+ "loss": 1.2676,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.02,
103
+ "learning_rate": 1.4285714285714287e-05,
104
+ "loss": 1.2522,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.523809523809524e-05,
110
+ "loss": 1.2597,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.6190476190476193e-05,
116
+ "loss": 1.2833,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 1.7142857142857142e-05,
122
+ "loss": 1.2838,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 1.8095238095238097e-05,
128
+ "loss": 1.2724,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 1.904761904761905e-05,
134
+ "loss": 1.2284,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.03,
139
+ "learning_rate": 1.9999883200175286e-05,
140
+ "loss": 1.2327,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.03,
145
+ "learning_rate": 1.999953280342959e-05,
146
+ "loss": 1.2544,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 1.9998948817948157e-05,
152
+ "loss": 1.2326,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 1.9998131257372878e-05,
158
+ "loss": 1.2025,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 1.9997080140801932e-05,
164
+ "loss": 1.259,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 1.9995795492789368e-05,
170
+ "loss": 1.2632,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "learning_rate": 1.999427734334452e-05,
176
+ "loss": 1.2132,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.04,
181
+ "learning_rate": 1.9992525727931303e-05,
182
+ "loss": 1.2555,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.04,
187
+ "learning_rate": 1.9990540687467394e-05,
188
+ "loss": 1.2657,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 1.998832226832327e-05,
194
+ "loss": 1.2168,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 1.9985870522321118e-05,
200
+ "loss": 1.2495,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 1.9983185506733643e-05,
206
+ "loss": 1.2284,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.05,
211
+ "learning_rate": 1.9980267284282718e-05,
212
+ "loss": 1.2396,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "learning_rate": 1.9977115923137912e-05,
218
+ "loss": 1.212,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.05,
223
+ "learning_rate": 1.9973731496914914e-05,
224
+ "loss": 1.2334,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 1.9970114084673796e-05,
230
+ "loss": 1.2277,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 1.9966263770917192e-05,
236
+ "loss": 1.2427,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 1.996218064558829e-05,
242
+ "loss": 1.27,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.06,
247
+ "learning_rate": 1.9957864804068752e-05,
248
+ "loss": 1.2774,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.06,
253
+ "learning_rate": 1.995331634717649e-05,
254
+ "loss": 1.2491,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.06,
259
+ "learning_rate": 1.994853538116329e-05,
260
+ "loss": 1.2824,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.06,
265
+ "learning_rate": 1.994352201771236e-05,
266
+ "loss": 1.2848,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.07,
271
+ "learning_rate": 1.9938276373935688e-05,
272
+ "loss": 1.2225,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.07,
277
+ "learning_rate": 1.993279857237133e-05,
278
+ "loss": 1.2455,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.07,
283
+ "learning_rate": 1.992708874098054e-05,
284
+ "loss": 1.2611,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.07,
289
+ "learning_rate": 1.9921147013144782e-05,
290
+ "loss": 1.2313,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.07,
295
+ "learning_rate": 1.99149735276626e-05,
296
+ "loss": 1.2363,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.07,
301
+ "learning_rate": 1.9908568428746408e-05,
302
+ "loss": 1.2269,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.07,
307
+ "learning_rate": 1.9901931866019087e-05,
308
+ "loss": 1.2967,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.08,
313
+ "learning_rate": 1.9895063994510512e-05,
314
+ "loss": 1.2253,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.08,
319
+ "learning_rate": 1.988796497465392e-05,
320
+ "loss": 1.2445,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.08,
325
+ "learning_rate": 1.9880634972282168e-05,
326
+ "loss": 1.2534,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.08,
331
+ "learning_rate": 1.987307415862385e-05,
332
+ "loss": 1.2541,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.08,
337
+ "learning_rate": 1.986528271029931e-05,
338
+ "loss": 1.1781,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.08,
343
+ "learning_rate": 1.985726080931651e-05,
344
+ "loss": 1.2588,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.08,
349
+ "learning_rate": 1.9849008643066774e-05,
350
+ "loss": 1.2065,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.09,
355
+ "learning_rate": 1.9840526404320415e-05,
356
+ "loss": 1.1835,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.09,
361
+ "learning_rate": 1.9831814291222233e-05,
362
+ "loss": 1.2175,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.09,
367
+ "learning_rate": 1.982287250728689e-05,
368
+ "loss": 1.284,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.09,
373
+ "learning_rate": 1.9813701261394136e-05,
374
+ "loss": 1.2142,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.09,
379
+ "learning_rate": 1.9804300767783958e-05,
380
+ "loss": 1.1987,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.09,
385
+ "learning_rate": 1.979467124605156e-05,
386
+ "loss": 1.2183,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.1,
391
+ "learning_rate": 1.9784812921142232e-05,
392
+ "loss": 1.2228,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.1,
397
+ "learning_rate": 1.977472602334609e-05,
398
+ "loss": 1.2348,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.1,
403
+ "learning_rate": 1.9764410788292724e-05,
404
+ "loss": 1.2709,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.1,
409
+ "learning_rate": 1.9753867456945653e-05,
410
+ "loss": 1.2204,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.1,
415
+ "learning_rate": 1.9743096275596735e-05,
416
+ "loss": 1.2384,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.1,
421
+ "learning_rate": 1.9732097495860388e-05,
422
+ "loss": 1.2821,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.1,
427
+ "learning_rate": 1.9720871374667714e-05,
428
+ "loss": 1.2486,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.11,
433
+ "learning_rate": 1.9709418174260523e-05,
434
+ "loss": 1.2789,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.11,
439
+ "learning_rate": 1.9697738162185163e-05,
440
+ "loss": 1.2097,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.11,
445
+ "learning_rate": 1.9685831611286312e-05,
446
+ "loss": 1.2084,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.11,
451
+ "learning_rate": 1.9673698799700582e-05,
452
+ "loss": 1.2385,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.11,
457
+ "learning_rate": 1.9661340010850025e-05,
458
+ "loss": 1.255,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.11,
463
+ "learning_rate": 1.9648755533435517e-05,
464
+ "loss": 1.1625,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.11,
469
+ "learning_rate": 1.9635945661430006e-05,
470
+ "loss": 1.2474,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.12,
475
+ "learning_rate": 1.9622910694071654e-05,
476
+ "loss": 1.2155,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.12,
481
+ "learning_rate": 1.9609650935856847e-05,
482
+ "loss": 1.2247,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.12,
487
+ "learning_rate": 1.9596166696533062e-05,
488
+ "loss": 1.2019,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.12,
493
+ "learning_rate": 1.9582458291091664e-05,
494
+ "loss": 1.201,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.12,
499
+ "learning_rate": 1.956852603976052e-05,
500
+ "loss": 1.1818,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.12,
505
+ "learning_rate": 1.9554370267996537e-05,
506
+ "loss": 1.2636,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.13,
511
+ "learning_rate": 1.9539991306478046e-05,
512
+ "loss": 1.2019,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.13,
517
+ "learning_rate": 1.952538949109708e-05,
518
+ "loss": 1.2112,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.13,
523
+ "learning_rate": 1.9510565162951538e-05,
524
+ "loss": 1.2328,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.13,
529
+ "learning_rate": 1.9495518668337204e-05,
530
+ "loss": 1.187,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.13,
535
+ "learning_rate": 1.9480250358739667e-05,
536
+ "loss": 1.2198,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.13,
541
+ "learning_rate": 1.94647605908261e-05,
542
+ "loss": 1.2043,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.13,
547
+ "learning_rate": 1.944904972643694e-05,
548
+ "loss": 1.2699,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.14,
553
+ "learning_rate": 1.9433118132577432e-05,
554
+ "loss": 1.2724,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.14,
559
+ "learning_rate": 1.9416966181409047e-05,
560
+ "loss": 1.29,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.14,
565
+ "learning_rate": 1.94005942502408e-05,
566
+ "loss": 1.2716,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.14,
571
+ "learning_rate": 1.9384002721520423e-05,
572
+ "loss": 1.2757,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.14,
577
+ "learning_rate": 1.936719198282545e-05,
578
+ "loss": 1.208,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.14,
583
+ "learning_rate": 1.9350162426854152e-05,
584
+ "loss": 1.2125,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.14,
589
+ "learning_rate": 1.933291445141635e-05,
590
+ "loss": 1.2842,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.15,
595
+ "learning_rate": 1.931544845942415e-05,
596
+ "loss": 1.1984,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.15,
601
+ "learning_rate": 1.9297764858882516e-05,
602
+ "loss": 1.2639,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.15,
607
+ "learning_rate": 1.927986406287973e-05,
608
+ "loss": 1.232,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.15,
613
+ "learning_rate": 1.9261746489577767e-05,
614
+ "loss": 1.2204,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.15,
619
+ "learning_rate": 1.92434125622025e-05,
620
+ "loss": 1.1784,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.15,
625
+ "learning_rate": 1.9224862709033823e-05,
626
+ "loss": 1.2618,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.15,
631
+ "learning_rate": 1.9206097363395668e-05,
632
+ "loss": 1.1905,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.16,
637
+ "learning_rate": 1.9187116963645845e-05,
638
+ "loss": 1.2221,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.16,
643
+ "learning_rate": 1.9167921953165827e-05,
644
+ "loss": 1.123,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.16,
649
+ "learning_rate": 1.9148512780350384e-05,
650
+ "loss": 1.2856,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.16,
655
+ "learning_rate": 1.9128889898597117e-05,
656
+ "loss": 1.2297,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.16,
661
+ "learning_rate": 1.910905376629585e-05,
662
+ "loss": 1.2103,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.16,
667
+ "learning_rate": 1.9089004846817947e-05,
668
+ "loss": 1.2346,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.17,
673
+ "learning_rate": 1.9068743608505454e-05,
674
+ "loss": 1.2455,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.17,
679
+ "learning_rate": 1.9048270524660197e-05,
680
+ "loss": 1.2047,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.17,
685
+ "learning_rate": 1.902758607353269e-05,
686
+ "loss": 1.2628,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.17,
691
+ "learning_rate": 1.9006690738310988e-05,
692
+ "loss": 1.2368,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.17,
697
+ "learning_rate": 1.898558500710939e-05,
698
+ "loss": 1.2111,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.17,
703
+ "learning_rate": 1.896426937295704e-05,
704
+ "loss": 1.217,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.17,
709
+ "learning_rate": 1.89427443337864e-05,
710
+ "loss": 1.2152,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.18,
715
+ "learning_rate": 1.8921010392421628e-05,
716
+ "loss": 1.2946,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.18,
721
+ "learning_rate": 1.889906805656684e-05,
722
+ "loss": 1.1985,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.18,
727
+ "learning_rate": 1.8876917838794226e-05,
728
+ "loss": 1.2813,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.18,
733
+ "learning_rate": 1.8854560256532098e-05,
734
+ "loss": 1.2304,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.18,
739
+ "learning_rate": 1.8831995832052802e-05,
740
+ "loss": 1.2149,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.18,
745
+ "learning_rate": 1.8809225092460488e-05,
746
+ "loss": 1.2348,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.18,
751
+ "learning_rate": 1.8786248569678847e-05,
752
+ "loss": 1.2094,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.19,
757
+ "learning_rate": 1.8763066800438638e-05,
758
+ "loss": 1.2816,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.19,
763
+ "learning_rate": 1.873968032626518e-05,
764
+ "loss": 1.2087,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.19,
769
+ "learning_rate": 1.8716089693465693e-05,
770
+ "loss": 1.2106,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.19,
775
+ "learning_rate": 1.869229545311653e-05,
776
+ "loss": 1.2248,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.19,
781
+ "learning_rate": 1.8668298161050308e-05,
782
+ "loss": 1.2067,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.19,
787
+ "learning_rate": 1.8644098377842934e-05,
788
+ "loss": 1.2321,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.19,
793
+ "learning_rate": 1.8619696668800494e-05,
794
+ "loss": 1.2214,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.2,
799
+ "learning_rate": 1.8595093603946053e-05,
800
+ "loss": 1.2007,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.2,
805
+ "learning_rate": 1.8570289758006346e-05,
806
+ "loss": 1.2108,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.2,
811
+ "learning_rate": 1.8545285710398343e-05,
812
+ "loss": 1.255,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.2,
817
+ "learning_rate": 1.852008204521572e-05,
818
+ "loss": 1.1655,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.2,
823
+ "learning_rate": 1.8494679351215212e-05,
824
+ "loss": 1.1728,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.2,
829
+ "learning_rate": 1.846907822180286e-05,
830
+ "loss": 1.2236,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.21,
835
+ "learning_rate": 1.8443279255020153e-05,
836
+ "loss": 1.1678,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.21,
841
+ "learning_rate": 1.8417283053530047e-05,
842
+ "loss": 1.2252,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.21,
847
+ "learning_rate": 1.8391090224602895e-05,
848
+ "loss": 1.2186,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.21,
853
+ "learning_rate": 1.8364701380102267e-05,
854
+ "loss": 1.1997,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.21,
859
+ "learning_rate": 1.8338117136470645e-05,
860
+ "loss": 1.2197,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.21,
865
+ "learning_rate": 1.831133811471503e-05,
866
+ "loss": 1.2612,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.21,
871
+ "learning_rate": 1.8284364940392426e-05,
872
+ "loss": 1.1799,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.22,
877
+ "learning_rate": 1.825719824359524e-05,
878
+ "loss": 1.2105,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.22,
883
+ "learning_rate": 1.8229838658936566e-05,
884
+ "loss": 1.2328,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.22,
889
+ "learning_rate": 1.820228682553533e-05,
890
+ "loss": 1.2605,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.22,
895
+ "learning_rate": 1.8174543387001403e-05,
896
+ "loss": 1.1525,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.22,
901
+ "learning_rate": 1.8146608991420533e-05,
902
+ "loss": 1.1731,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.22,
907
+ "learning_rate": 1.811848429133922e-05,
908
+ "loss": 1.2118,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.22,
913
+ "learning_rate": 1.8090169943749477e-05,
914
+ "loss": 1.1936,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.23,
919
+ "learning_rate": 1.8061666610073465e-05,
920
+ "loss": 1.13,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.23,
925
+ "learning_rate": 1.8032974956148064e-05,
926
+ "loss": 1.1965,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.23,
931
+ "learning_rate": 1.8004095652209304e-05,
932
+ "loss": 1.221,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.23,
937
+ "learning_rate": 1.7975029372876706e-05,
938
+ "loss": 1.1929,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.23,
943
+ "learning_rate": 1.7945776797137544e-05,
944
+ "loss": 1.1709,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.23,
949
+ "learning_rate": 1.791633860833096e-05,
950
+ "loss": 1.2288,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.24,
955
+ "learning_rate": 1.7886715494132008e-05,
956
+ "loss": 1.266,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.24,
961
+ "learning_rate": 1.7856908146535602e-05,
962
+ "loss": 1.1853,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.24,
967
+ "learning_rate": 1.7826917261840337e-05,
968
+ "loss": 1.1828,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.24,
973
+ "learning_rate": 1.7796743540632226e-05,
974
+ "loss": 1.1766,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.24,
979
+ "learning_rate": 1.7766387687768338e-05,
980
+ "loss": 1.2138,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.24,
985
+ "learning_rate": 1.7735850412360332e-05,
986
+ "loss": 1.1841,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.24,
991
+ "learning_rate": 1.7705132427757895e-05,
992
+ "loss": 1.2339,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.25,
997
+ "learning_rate": 1.7674234451532065e-05,
998
+ "loss": 1.2144,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.25,
1003
+ "learning_rate": 1.7643157205458483e-05,
1004
+ "loss": 1.2213,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.25,
1009
+ "learning_rate": 1.7611901415500536e-05,
1010
+ "loss": 1.218,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.25,
1015
+ "learning_rate": 1.7580467811792374e-05,
1016
+ "loss": 1.205,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.25,
1021
+ "learning_rate": 1.7548857128621878e-05,
1022
+ "loss": 1.191,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.25,
1027
+ "learning_rate": 1.7517070104413497e-05,
1028
+ "loss": 1.2311,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.25,
1033
+ "learning_rate": 1.7485107481711014e-05,
1034
+ "loss": 1.2155,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.26,
1039
+ "learning_rate": 1.745297000716016e-05,
1040
+ "loss": 1.1845,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.26,
1045
+ "learning_rate": 1.7420658431491224e-05,
1046
+ "loss": 1.1699,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.26,
1051
+ "learning_rate": 1.7388173509501475e-05,
1052
+ "loss": 1.2239,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.26,
1057
+ "learning_rate": 1.7355516000037555e-05,
1058
+ "loss": 1.179,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.26,
1063
+ "learning_rate": 1.7322686665977738e-05,
1064
+ "loss": 1.2051,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.26,
1069
+ "learning_rate": 1.7289686274214116e-05,
1070
+ "loss": 1.1782,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.26,
1075
+ "learning_rate": 1.7256515595634688e-05,
1076
+ "loss": 1.2368,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.27,
1081
+ "learning_rate": 1.722317540510534e-05,
1082
+ "loss": 1.2095,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.27,
1087
+ "learning_rate": 1.7189666481451755e-05,
1088
+ "loss": 1.2139,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.27,
1093
+ "learning_rate": 1.715598960744121e-05,
1094
+ "loss": 1.1589,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.27,
1099
+ "learning_rate": 1.712214556976431e-05,
1100
+ "loss": 1.1475,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.27,
1105
+ "learning_rate": 1.7088135159016584e-05,
1106
+ "loss": 1.1527,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.27,
1111
+ "learning_rate": 1.7053959169680033e-05,
1112
+ "loss": 1.1701,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.28,
1117
+ "learning_rate": 1.7019618400104572e-05,
1118
+ "loss": 1.2017,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.28,
1123
+ "learning_rate": 1.6985113652489374e-05,
1124
+ "loss": 1.2087,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.28,
1129
+ "learning_rate": 1.695044573286413e-05,
1130
+ "loss": 1.249,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.28,
1135
+ "learning_rate": 1.6915615451070234e-05,
1136
+ "loss": 1.1857,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.28,
1141
+ "learning_rate": 1.688062362074184e-05,
1142
+ "loss": 1.2133,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.28,
1147
+ "learning_rate": 1.684547105928689e-05,
1148
+ "loss": 1.2234,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.28,
1153
+ "learning_rate": 1.6810158587867973e-05,
1154
+ "loss": 1.1919,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.29,
1159
+ "learning_rate": 1.677468703138319e-05,
1160
+ "loss": 1.2703,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.29,
1165
+ "learning_rate": 1.673905721844686e-05,
1166
+ "loss": 1.1511,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.29,
1171
+ "learning_rate": 1.670326998137016e-05,
1172
+ "loss": 1.1969,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.29,
1177
+ "learning_rate": 1.666732615614169e-05,
1178
+ "loss": 1.1847,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.29,
1183
+ "learning_rate": 1.6631226582407954e-05,
1184
+ "loss": 1.2302,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.29,
1189
+ "learning_rate": 1.6594972103453727e-05,
1190
+ "loss": 1.2383,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.29,
1195
+ "learning_rate": 1.6558563566182365e-05,
1196
+ "loss": 1.2046,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.3,
1201
+ "learning_rate": 1.652200182109602e-05,
1202
+ "loss": 1.173,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.3,
1207
+ "learning_rate": 1.6485287722275783e-05,
1208
+ "loss": 1.1651,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.3,
1213
+ "learning_rate": 1.6448422127361707e-05,
1214
+ "loss": 1.1685,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.3,
1219
+ "learning_rate": 1.64114058975328e-05,
1220
+ "loss": 1.2085,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.3,
1225
+ "learning_rate": 1.63742398974869e-05,
1226
+ "loss": 1.2296,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.3,
1231
+ "learning_rate": 1.6336924995420453e-05,
1232
+ "loss": 1.1602,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.31,
1237
+ "learning_rate": 1.6299462063008272e-05,
1238
+ "loss": 1.26,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.31,
1243
+ "learning_rate": 1.626185197538314e-05,
1244
+ "loss": 1.1697,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.31,
1249
+ "learning_rate": 1.6224095611115385e-05,
1250
+ "loss": 1.2056,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.31,
1255
+ "learning_rate": 1.6186193852192356e-05,
1256
+ "loss": 1.205,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.31,
1261
+ "learning_rate": 1.6148147583997813e-05,
1262
+ "loss": 1.1565,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.31,
1267
+ "learning_rate": 1.6109957695291246e-05,
1268
+ "loss": 1.1724,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.31,
1273
+ "learning_rate": 1.6071625078187113e-05,
1274
+ "loss": 1.1426,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.32,
1279
+ "learning_rate": 1.603315062813401e-05,
1280
+ "loss": 1.2175,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.32,
1285
+ "learning_rate": 1.5994535243893742e-05,
1286
+ "loss": 1.205,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.32,
1291
+ "learning_rate": 1.5955779827520327e-05,
1292
+ "loss": 1.2054,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.32,
1297
+ "learning_rate": 1.5916885284338937e-05,
1298
+ "loss": 1.2056,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.32,
1303
+ "learning_rate": 1.5877852522924733e-05,
1304
+ "loss": 1.1235,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.32,
1309
+ "learning_rate": 1.5838682455081657e-05,
1310
+ "loss": 1.189,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.32,
1315
+ "learning_rate": 1.5799375995821116e-05,
1316
+ "loss": 1.2081,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.33,
1321
+ "learning_rate": 1.5759934063340627e-05,
1322
+ "loss": 1.2584,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.33,
1327
+ "learning_rate": 1.5720357579002346e-05,
1328
+ "loss": 1.2219,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.33,
1333
+ "learning_rate": 1.568064746731156e-05,
1334
+ "loss": 1.1252,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.33,
1339
+ "learning_rate": 1.5640804655895086e-05,
1340
+ "loss": 1.2149,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.33,
1345
+ "learning_rate": 1.5600830075479604e-05,
1346
+ "loss": 1.144,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.33,
1351
+ "learning_rate": 1.5560724659869905e-05,
1352
+ "loss": 1.1205,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.33,
1357
+ "learning_rate": 1.5520489345927095e-05,
1358
+ "loss": 1.2103,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.34,
1363
+ "learning_rate": 1.5480125073546705e-05,
1364
+ "loss": 1.1597,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.34,
1369
+ "learning_rate": 1.5439632785636707e-05,
1370
+ "loss": 1.217,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.34,
1375
+ "learning_rate": 1.539901342809554e-05,
1376
+ "loss": 1.148,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.34,
1381
+ "learning_rate": 1.5358267949789968e-05,
1382
+ "loss": 1.2158,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.34,
1387
+ "learning_rate": 1.5317397302532933e-05,
1388
+ "loss": 1.2159,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.34,
1393
+ "learning_rate": 1.527640244106133e-05,
1394
+ "loss": 1.1752,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.35,
1399
+ "learning_rate": 1.5235284323013674e-05,
1400
+ "loss": 1.2458,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.35,
1405
+ "learning_rate": 1.5194043908907774e-05,
1406
+ "loss": 1.1763,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.35,
1411
+ "learning_rate": 1.515268216211825e-05,
1412
+ "loss": 1.1833,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.35,
1417
+ "learning_rate": 1.5111200048854055e-05,
1418
+ "loss": 1.1247,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.35,
1423
+ "learning_rate": 1.5069598538135905e-05,
1424
+ "loss": 1.1844,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.35,
1429
+ "learning_rate": 1.5027878601773633e-05,
1430
+ "loss": 1.234,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.35,
1435
+ "learning_rate": 1.4986041214343487e-05,
1436
+ "loss": 1.1977,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.36,
1441
+ "learning_rate": 1.494408735316537e-05,
1442
+ "loss": 1.1907,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.36,
1447
+ "learning_rate": 1.490201799828001e-05,
1448
+ "loss": 1.1919,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.36,
1453
+ "learning_rate": 1.485983413242606e-05,
1454
+ "loss": 1.2155,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.36,
1459
+ "learning_rate": 1.4817536741017153e-05,
1460
+ "loss": 1.1924,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.36,
1465
+ "learning_rate": 1.4775126812118865e-05,
1466
+ "loss": 1.1404,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.36,
1471
+ "learning_rate": 1.473260533642565e-05,
1472
+ "loss": 1.1864,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.36,
1477
+ "learning_rate": 1.4689973307237687e-05,
1478
+ "loss": 1.1742,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.37,
1483
+ "learning_rate": 1.4647231720437687e-05,
1484
+ "loss": 1.1345,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.37,
1489
+ "learning_rate": 1.4604381574467616e-05,
1490
+ "loss": 1.1472,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.37,
1495
+ "learning_rate": 1.4561423870305385e-05,
1496
+ "loss": 1.2398,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.37,
1501
+ "learning_rate": 1.4518359611441452e-05,
1502
+ "loss": 1.1712,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.37,
1507
+ "learning_rate": 1.4475189803855399e-05,
1508
+ "loss": 1.1982,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.37,
1513
+ "learning_rate": 1.4431915455992416e-05,
1514
+ "loss": 1.1724,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.38,
1519
+ "learning_rate": 1.438853757873975e-05,
1520
+ "loss": 1.1742,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.38,
1525
+ "learning_rate": 1.4345057185403098e-05,
1526
+ "loss": 1.199,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.38,
1531
+ "learning_rate": 1.430147529168292e-05,
1532
+ "loss": 1.1732,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.38,
1537
+ "learning_rate": 1.4257792915650728e-05,
1538
+ "loss": 1.2167,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.38,
1543
+ "learning_rate": 1.4214011077725291e-05,
1544
+ "loss": 1.1388,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.38,
1549
+ "learning_rate": 1.4170130800648814e-05,
1550
+ "loss": 1.2166,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.38,
1555
+ "learning_rate": 1.4126153109463025e-05,
1556
+ "loss": 1.1451,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.39,
1561
+ "learning_rate": 1.4082079031485253e-05,
1562
+ "loss": 1.1513,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.39,
1567
+ "learning_rate": 1.4037909596284411e-05,
1568
+ "loss": 1.1704,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.39,
1573
+ "learning_rate": 1.3993645835656957e-05,
1574
+ "loss": 1.1971,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.39,
1579
+ "learning_rate": 1.394928878360279e-05,
1580
+ "loss": 1.2009,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.39,
1585
+ "learning_rate": 1.3904839476301088e-05,
1586
+ "loss": 1.2543,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.39,
1591
+ "learning_rate": 1.3860298952086115e-05,
1592
+ "loss": 1.1814,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.39,
1597
+ "learning_rate": 1.3815668251422953e-05,
1598
+ "loss": 1.1364,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.4,
1603
+ "learning_rate": 1.3770948416883205e-05,
1604
+ "loss": 1.194,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.4,
1609
+ "learning_rate": 1.3726140493120639e-05,
1610
+ "loss": 1.1886,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.4,
1615
+ "learning_rate": 1.3681245526846782e-05,
1616
+ "loss": 1.1643,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.4,
1621
+ "learning_rate": 1.3636264566806473e-05,
1622
+ "loss": 1.1556,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.4,
1627
+ "learning_rate": 1.3591198663753358e-05,
1628
+ "loss": 1.1988,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.4,
1633
+ "learning_rate": 1.354604887042536e-05,
1634
+ "loss": 1.1777,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.4,
1639
+ "learning_rate": 1.3500816241520059e-05,
1640
+ "loss": 1.1831,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.41,
1645
+ "learning_rate": 1.3455501833670089e-05,
1646
+ "loss": 1.1756,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.41,
1651
+ "learning_rate": 1.3410106705418424e-05,
1652
+ "loss": 1.1909,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.41,
1657
+ "learning_rate": 1.336463191719367e-05,
1658
+ "loss": 1.1974,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.41,
1663
+ "learning_rate": 1.3319078531285286e-05,
1664
+ "loss": 1.1798,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.41,
1669
+ "learning_rate": 1.3273447611818768e-05,
1670
+ "loss": 1.1379,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.41,
1675
+ "learning_rate": 1.3227740224730799e-05,
1676
+ "loss": 1.1749,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.42,
1681
+ "learning_rate": 1.3181957437744334e-05,
1682
+ "loss": 1.1885,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.42,
1687
+ "learning_rate": 1.3136100320343674e-05,
1688
+ "loss": 1.1213,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.42,
1693
+ "learning_rate": 1.3090169943749475e-05,
1694
+ "loss": 1.1782,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.42,
1699
+ "learning_rate": 1.3044167380893726e-05,
1700
+ "loss": 1.2075,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.42,
1705
+ "learning_rate": 1.2998093706394674e-05,
1706
+ "loss": 1.1648,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.42,
1711
+ "learning_rate": 1.295194999653175e-05,
1712
+ "loss": 1.1872,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.42,
1717
+ "learning_rate": 1.2905737329220394e-05,
1718
+ "loss": 1.2484,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.43,
1723
+ "learning_rate": 1.2859456783986892e-05,
1724
+ "loss": 1.1544,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.43,
1729
+ "learning_rate": 1.2813109441943166e-05,
1730
+ "loss": 1.2163,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.43,
1735
+ "learning_rate": 1.2766696385761494e-05,
1736
+ "loss": 1.1837,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.43,
1741
+ "learning_rate": 1.2720218699649243e-05,
1742
+ "loss": 1.153,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.43,
1747
+ "learning_rate": 1.2673677469323535e-05,
1748
+ "loss": 1.2074,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.43,
1753
+ "learning_rate": 1.2627073781985873e-05,
1754
+ "loss": 1.1652,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.43,
1759
+ "learning_rate": 1.258040872629676e-05,
1760
+ "loss": 1.2019,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.44,
1765
+ "learning_rate": 1.2533683392350264e-05,
1766
+ "loss": 1.1428,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.44,
1771
+ "learning_rate": 1.2486898871648547e-05,
1772
+ "loss": 1.1073,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.44,
1777
+ "learning_rate": 1.2440056257076374e-05,
1778
+ "loss": 1.2043,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.44,
1783
+ "learning_rate": 1.2393156642875579e-05,
1784
+ "loss": 1.1542,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.44,
1789
+ "learning_rate": 1.2346201124619502e-05,
1790
+ "loss": 1.1572,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.44,
1795
+ "learning_rate": 1.2299190799187405e-05,
1796
+ "loss": 1.1742,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.45,
1801
+ "learning_rate": 1.2252126764738845e-05,
1802
+ "loss": 1.2058,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.45,
1807
+ "learning_rate": 1.2205010120688012e-05,
1808
+ "loss": 1.1983,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.45,
1813
+ "learning_rate": 1.2157841967678064e-05,
1814
+ "loss": 1.171,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.45,
1819
+ "learning_rate": 1.2110623407555398e-05,
1820
+ "loss": 1.1433,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.45,
1825
+ "learning_rate": 1.2063355543343925e-05,
1826
+ "loss": 1.2067,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.45,
1831
+ "learning_rate": 1.2016039479219293e-05,
1832
+ "loss": 1.18,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.45,
1837
+ "learning_rate": 1.1968676320483103e-05,
1838
+ "loss": 1.145,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.46,
1843
+ "learning_rate": 1.1921267173537083e-05,
1844
+ "loss": 1.157,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.46,
1849
+ "learning_rate": 1.187381314585725e-05,
1850
+ "loss": 1.2327,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.46,
1855
+ "learning_rate": 1.1826315345968014e-05,
1856
+ "loss": 1.2182,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.46,
1861
+ "learning_rate": 1.1778774883416325e-05,
1862
+ "loss": 1.2291,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.46,
1867
+ "learning_rate": 1.1731192868745717e-05,
1868
+ "loss": 1.2624,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.46,
1873
+ "learning_rate": 1.1683570413470386e-05,
1874
+ "loss": 1.1245,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.46,
1879
+ "learning_rate": 1.163590863004922e-05,
1880
+ "loss": 1.2198,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.47,
1885
+ "learning_rate": 1.1588208631859808e-05,
1886
+ "loss": 1.121,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.47,
1891
+ "learning_rate": 1.154047153317243e-05,
1892
+ "loss": 1.1509,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.47,
1897
+ "learning_rate": 1.1492698449124042e-05,
1898
+ "loss": 1.0908,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.47,
1903
+ "learning_rate": 1.1444890495692214e-05,
1904
+ "loss": 1.2005,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.47,
1909
+ "learning_rate": 1.1397048789669061e-05,
1910
+ "loss": 1.1822,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.47,
1915
+ "learning_rate": 1.1349174448635158e-05,
1916
+ "loss": 1.1689,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.47,
1921
+ "learning_rate": 1.1301268590933434e-05,
1922
+ "loss": 1.1987,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.48,
1927
+ "learning_rate": 1.1253332335643043e-05,
1928
+ "loss": 1.1795,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.48,
1933
+ "learning_rate": 1.1205366802553233e-05,
1934
+ "loss": 1.1771,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.48,
1939
+ "learning_rate": 1.1157373112137171e-05,
1940
+ "loss": 1.1479,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.48,
1945
+ "learning_rate": 1.1109352385525782e-05,
1946
+ "loss": 1.1888,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.48,
1951
+ "learning_rate": 1.1061305744481561e-05,
1952
+ "loss": 1.1953,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.48,
1957
+ "learning_rate": 1.1013234311372353e-05,
1958
+ "loss": 1.2657,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.49,
1963
+ "learning_rate": 1.096513920914515e-05,
1964
+ "loss": 1.2082,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.49,
1969
+ "learning_rate": 1.0917021561299864e-05,
1970
+ "loss": 1.212,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.49,
1975
+ "learning_rate": 1.0868882491863048e-05,
1976
+ "loss": 1.1922,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.49,
1981
+ "learning_rate": 1.0820723125361685e-05,
1982
+ "loss": 1.1676,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.49,
1987
+ "learning_rate": 1.077254458679689e-05,
1988
+ "loss": 1.1622,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.49,
1993
+ "learning_rate": 1.0724348001617626e-05,
1994
+ "loss": 1.1919,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.49,
1999
+ "learning_rate": 1.0676134495694437e-05,
2000
+ "loss": 1.1744,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.5,
2005
+ "learning_rate": 1.0627905195293135e-05,
2006
+ "loss": 1.1615,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.5,
2011
+ "learning_rate": 1.0579661227048484e-05,
2012
+ "loss": 1.1561,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.5,
2017
+ "learning_rate": 1.0531403717937888e-05,
2018
+ "loss": 1.194,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.5,
2023
+ "learning_rate": 1.0483133795255072e-05,
2024
+ "loss": 1.1245,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.5,
2029
+ "learning_rate": 1.0434852586583734e-05,
2030
+ "loss": 1.1741,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.5,
2035
+ "learning_rate": 1.0386561219771222e-05,
2036
+ "loss": 1.1384,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.5,
2041
+ "learning_rate": 1.0338260822902166e-05,
2042
+ "loss": 1.1889,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.51,
2047
+ "learning_rate": 1.0289952524272147e-05,
2048
+ "loss": 1.2371,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.51,
2053
+ "learning_rate": 1.0241637452361327e-05,
2054
+ "loss": 1.1536,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.51,
2059
+ "learning_rate": 1.0193316735808085e-05,
2060
+ "loss": 1.1573,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.51,
2065
+ "learning_rate": 1.0144991503382676e-05,
2066
+ "loss": 1.1573,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.51,
2071
+ "learning_rate": 1.0096662883960833e-05,
2072
+ "loss": 1.1788,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.51,
2077
+ "learning_rate": 1.0048332006497406e-05,
2078
+ "loss": 1.1736,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.51,
2083
+ "learning_rate": 1e-05,
2084
+ "loss": 1.224,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.52,
2089
+ "learning_rate": 9.951667993502599e-06,
2090
+ "loss": 1.1847,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.52,
2095
+ "learning_rate": 9.903337116039172e-06,
2096
+ "loss": 1.2004,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.52,
2101
+ "learning_rate": 9.855008496617326e-06,
2102
+ "loss": 1.1378,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.52,
2107
+ "learning_rate": 9.806683264191916e-06,
2108
+ "loss": 1.171,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.52,
2113
+ "learning_rate": 9.75836254763868e-06,
2114
+ "loss": 1.162,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.52,
2119
+ "learning_rate": 9.710047475727858e-06,
2120
+ "loss": 1.1802,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.53,
2125
+ "learning_rate": 9.661739177097834e-06,
2126
+ "loss": 1.1686,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.53,
2131
+ "learning_rate": 9.61343878022878e-06,
2132
+ "loss": 1.1529,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.53,
2137
+ "learning_rate": 9.565147413416266e-06,
2138
+ "loss": 1.1879,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.53,
2143
+ "learning_rate": 9.516866204744932e-06,
2144
+ "loss": 1.1072,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.53,
2149
+ "learning_rate": 9.468596282062112e-06,
2150
+ "loss": 1.1716,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.53,
2155
+ "learning_rate": 9.420338772951521e-06,
2156
+ "loss": 1.2,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.53,
2161
+ "learning_rate": 9.372094804706867e-06,
2162
+ "loss": 1.1524,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.54,
2167
+ "learning_rate": 9.323865504305566e-06,
2168
+ "loss": 1.1684,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.54,
2173
+ "learning_rate": 9.275651998382377e-06,
2174
+ "loss": 1.163,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.54,
2179
+ "learning_rate": 9.227455413203117e-06,
2180
+ "loss": 1.1506,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.54,
2185
+ "learning_rate": 9.179276874638315e-06,
2186
+ "loss": 1.1785,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.54,
2191
+ "learning_rate": 9.131117508136952e-06,
2192
+ "loss": 1.1574,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.54,
2197
+ "learning_rate": 9.082978438700141e-06,
2198
+ "loss": 1.1907,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.54,
2203
+ "learning_rate": 9.034860790854848e-06,
2204
+ "loss": 1.1482,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.55,
2209
+ "learning_rate": 8.986765688627652e-06,
2210
+ "loss": 1.1086,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.55,
2215
+ "learning_rate": 8.938694255518442e-06,
2216
+ "loss": 1.1637,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.55,
2221
+ "learning_rate": 8.890647614474223e-06,
2222
+ "loss": 1.1991,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.55,
2227
+ "learning_rate": 8.842626887862832e-06,
2228
+ "loss": 1.1559,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.55,
2233
+ "learning_rate": 8.79463319744677e-06,
2234
+ "loss": 1.2513,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.55,
2239
+ "learning_rate": 8.74666766435696e-06,
2240
+ "loss": 1.1638,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.56,
2245
+ "learning_rate": 8.698731409066571e-06,
2246
+ "loss": 1.1504,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.56,
2251
+ "learning_rate": 8.650825551364844e-06,
2252
+ "loss": 1.1642,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.56,
2257
+ "learning_rate": 8.60295121033094e-06,
2258
+ "loss": 1.2143,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.56,
2263
+ "learning_rate": 8.555109504307787e-06,
2264
+ "loss": 1.167,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.56,
2269
+ "learning_rate": 8.50730155087596e-06,
2270
+ "loss": 1.0684,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.56,
2275
+ "learning_rate": 8.459528466827576e-06,
2276
+ "loss": 1.1521,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.56,
2281
+ "learning_rate": 8.411791368140197e-06,
2282
+ "loss": 1.1821,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.57,
2287
+ "learning_rate": 8.364091369950783e-06,
2288
+ "loss": 1.1589,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.57,
2293
+ "learning_rate": 8.316429586529616e-06,
2294
+ "loss": 1.1123,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.57,
2299
+ "learning_rate": 8.268807131254288e-06,
2300
+ "loss": 1.1787,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.57,
2305
+ "learning_rate": 8.22122511658368e-06,
2306
+ "loss": 1.1102,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.57,
2311
+ "learning_rate": 8.173684654031986e-06,
2312
+ "loss": 1.1509,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.57,
2317
+ "learning_rate": 8.126186854142754e-06,
2318
+ "loss": 1.1295,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.57,
2323
+ "learning_rate": 8.078732826462917e-06,
2324
+ "loss": 1.1561,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.58,
2329
+ "learning_rate": 8.0313236795169e-06,
2330
+ "loss": 1.1393,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.58,
2335
+ "learning_rate": 7.983960520780712e-06,
2336
+ "loss": 1.1318,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.58,
2341
+ "learning_rate": 7.936644456656082e-06,
2342
+ "loss": 1.1277,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.58,
2347
+ "learning_rate": 7.889376592444605e-06,
2348
+ "loss": 1.2151,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.58,
2353
+ "learning_rate": 7.84215803232194e-06,
2354
+ "loss": 1.1762,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.58,
2359
+ "learning_rate": 7.794989879311991e-06,
2360
+ "loss": 1.1384,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.58,
2365
+ "learning_rate": 7.74787323526116e-06,
2366
+ "loss": 1.0996,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.59,
2371
+ "learning_rate": 7.700809200812598e-06,
2372
+ "loss": 1.1601,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.59,
2377
+ "learning_rate": 7.653798875380498e-06,
2378
+ "loss": 1.1501,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.59,
2383
+ "learning_rate": 7.6068433571244234e-06,
2384
+ "loss": 1.1391,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.59,
2389
+ "learning_rate": 7.559943742923626e-06,
2390
+ "loss": 1.1429,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.59,
2395
+ "learning_rate": 7.513101128351454e-06,
2396
+ "loss": 1.1895,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.59,
2401
+ "learning_rate": 7.466316607649735e-06,
2402
+ "loss": 1.171,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.6,
2407
+ "learning_rate": 7.419591273703245e-06,
2408
+ "loss": 1.1202,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.6,
2413
+ "learning_rate": 7.372926218014131e-06,
2414
+ "loss": 1.1702,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.6,
2419
+ "learning_rate": 7.326322530676471e-06,
2420
+ "loss": 1.1175,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.6,
2425
+ "learning_rate": 7.27978130035076e-06,
2426
+ "loss": 1.1549,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.6,
2431
+ "learning_rate": 7.233303614238511e-06,
2432
+ "loss": 1.167,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.6,
2437
+ "learning_rate": 7.186890558056836e-06,
2438
+ "loss": 1.1407,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.6,
2443
+ "learning_rate": 7.1405432160131076e-06,
2444
+ "loss": 1.1076,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.61,
2449
+ "learning_rate": 7.0942626707796094e-06,
2450
+ "loss": 1.1575,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.61,
2455
+ "learning_rate": 7.048050003468252e-06,
2456
+ "loss": 1.1732,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.61,
2461
+ "learning_rate": 7.001906293605329e-06,
2462
+ "loss": 1.1869,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.61,
2467
+ "learning_rate": 6.9558326191062775e-06,
2468
+ "loss": 1.1875,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.61,
2473
+ "learning_rate": 6.909830056250527e-06,
2474
+ "loss": 1.1501,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.61,
2479
+ "learning_rate": 6.8638996796563275e-06,
2480
+ "loss": 1.1729,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.61,
2485
+ "learning_rate": 6.81804256225567e-06,
2486
+ "loss": 1.1432,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.62,
2491
+ "learning_rate": 6.7722597752692055e-06,
2492
+ "loss": 1.1358,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.62,
2497
+ "learning_rate": 6.726552388181235e-06,
2498
+ "loss": 1.143,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.62,
2503
+ "learning_rate": 6.6809214687147165e-06,
2504
+ "loss": 1.1349,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.62,
2509
+ "learning_rate": 6.6353680828063306e-06,
2510
+ "loss": 1.1159,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.62,
2515
+ "learning_rate": 6.589893294581579e-06,
2516
+ "loss": 1.1903,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.62,
2521
+ "learning_rate": 6.5444981663299135e-06,
2522
+ "loss": 1.1597,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.63,
2527
+ "learning_rate": 6.499183758479944e-06,
2528
+ "loss": 1.1564,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.63,
2533
+ "learning_rate": 6.453951129574644e-06,
2534
+ "loss": 1.1286,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.63,
2539
+ "learning_rate": 6.408801336246645e-06,
2540
+ "loss": 1.1151,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.63,
2545
+ "learning_rate": 6.363735433193532e-06,
2546
+ "loss": 1.1358,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.63,
2551
+ "learning_rate": 6.318754473153224e-06,
2552
+ "loss": 1.14,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.63,
2557
+ "learning_rate": 6.273859506879365e-06,
2558
+ "loss": 1.1771,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.63,
2563
+ "learning_rate": 6.229051583116799e-06,
2564
+ "loss": 1.1251,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.64,
2569
+ "learning_rate": 6.184331748577049e-06,
2570
+ "loss": 1.0971,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.64,
2575
+ "learning_rate": 6.139701047913885e-06,
2576
+ "loss": 1.0982,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.64,
2581
+ "learning_rate": 6.095160523698913e-06,
2582
+ "loss": 1.1474,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.64,
2587
+ "learning_rate": 6.0507112163972106e-06,
2588
+ "loss": 1.1362,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.64,
2593
+ "learning_rate": 6.006354164343047e-06,
2594
+ "loss": 1.1188,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.64,
2599
+ "learning_rate": 5.962090403715592e-06,
2600
+ "loss": 1.1482,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.64,
2605
+ "learning_rate": 5.9179209685147525e-06,
2606
+ "loss": 1.1055,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.65,
2611
+ "learning_rate": 5.873846890536977e-06,
2612
+ "loss": 1.1933,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.65,
2617
+ "learning_rate": 5.829869199351188e-06,
2618
+ "loss": 1.1561,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.65,
2623
+ "learning_rate": 5.785988922274711e-06,
2624
+ "loss": 1.1167,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.65,
2629
+ "learning_rate": 5.742207084349274e-06,
2630
+ "loss": 1.1961,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.65,
2635
+ "learning_rate": 5.698524708317082e-06,
2636
+ "loss": 1.1883,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.65,
2641
+ "learning_rate": 5.654942814596902e-06,
2642
+ "loss": 1.1935,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.65,
2647
+ "learning_rate": 5.611462421260251e-06,
2648
+ "loss": 1.0944,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.66,
2653
+ "learning_rate": 5.5680845440075885e-06,
2654
+ "loss": 1.1319,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.66,
2659
+ "learning_rate": 5.5248101961446065e-06,
2660
+ "loss": 1.2082,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.66,
2665
+ "learning_rate": 5.481640388558551e-06,
2666
+ "loss": 1.1499,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.66,
2671
+ "learning_rate": 5.43857612969462e-06,
2672
+ "loss": 1.0991,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.66,
2677
+ "learning_rate": 5.3956184255323855e-06,
2678
+ "loss": 1.1476,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.66,
2683
+ "learning_rate": 5.352768279562315e-06,
2684
+ "loss": 1.1776,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.67,
2689
+ "learning_rate": 5.310026692762316e-06,
2690
+ "loss": 1.1296,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.67,
2695
+ "learning_rate": 5.267394663574351e-06,
2696
+ "loss": 1.087,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.67,
2701
+ "learning_rate": 5.224873187881136e-06,
2702
+ "loss": 1.1738,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.67,
2707
+ "learning_rate": 5.1824632589828465e-06,
2708
+ "loss": 1.1627,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.67,
2713
+ "learning_rate": 5.14016586757394e-06,
2714
+ "loss": 1.1736,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.67,
2719
+ "learning_rate": 5.097982001719994e-06,
2720
+ "loss": 1.1486,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.67,
2725
+ "learning_rate": 5.0559126468346354e-06,
2726
+ "loss": 1.2196,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.68,
2731
+ "learning_rate": 5.013958785656516e-06,
2732
+ "loss": 1.2005,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.68,
2737
+ "learning_rate": 4.972121398226371e-06,
2738
+ "loss": 1.1786,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.68,
2743
+ "learning_rate": 4.930401461864096e-06,
2744
+ "loss": 1.1405,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.68,
2749
+ "learning_rate": 4.888799951145948e-06,
2750
+ "loss": 1.15,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.68,
2755
+ "learning_rate": 4.847317837881757e-06,
2756
+ "loss": 1.1965,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.68,
2761
+ "learning_rate": 4.805956091092228e-06,
2762
+ "loss": 1.1939,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.68,
2767
+ "learning_rate": 4.764715676986327e-06,
2768
+ "loss": 1.0932,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.69,
2773
+ "learning_rate": 4.7235975589386715e-06,
2774
+ "loss": 1.1657,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.69,
2779
+ "learning_rate": 4.6826026974670665e-06,
2780
+ "loss": 1.1878,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.69,
2785
+ "learning_rate": 4.641732050210036e-06,
2786
+ "loss": 1.1552,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.69,
2791
+ "learning_rate": 4.6009865719044645e-06,
2792
+ "loss": 1.0927,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.69,
2797
+ "learning_rate": 4.560367214363295e-06,
2798
+ "loss": 1.0978,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.69,
2803
+ "learning_rate": 4.519874926453303e-06,
2804
+ "loss": 1.1518,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.7,
2809
+ "learning_rate": 4.479510654072905e-06,
2810
+ "loss": 1.0652,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.7,
2815
+ "learning_rate": 4.439275340130099e-06,
2816
+ "loss": 1.1441,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.7,
2821
+ "learning_rate": 4.399169924520403e-06,
2822
+ "loss": 1.0733,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.7,
2827
+ "learning_rate": 4.359195344104916e-06,
2828
+ "loss": 1.1216,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.7,
2833
+ "learning_rate": 4.319352532688444e-06,
2834
+ "loss": 1.1248,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.7,
2839
+ "learning_rate": 4.279642420997655e-06,
2840
+ "loss": 1.1487,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.7,
2845
+ "learning_rate": 4.240065936659374e-06,
2846
+ "loss": 1.1352,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.71,
2851
+ "learning_rate": 4.200624004178886e-06,
2852
+ "loss": 1.1473,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.71,
2857
+ "learning_rate": 4.1613175449183484e-06,
2858
+ "loss": 1.1667,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.71,
2863
+ "learning_rate": 4.12214747707527e-06,
2864
+ "loss": 1.1294,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.71,
2869
+ "learning_rate": 4.083114715661069e-06,
2870
+ "loss": 1.1839,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.71,
2875
+ "learning_rate": 4.044220172479675e-06,
2876
+ "loss": 1.0997,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.71,
2881
+ "learning_rate": 4.0054647561062625e-06,
2882
+ "loss": 1.0926,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.71,
2887
+ "learning_rate": 3.9668493718659924e-06,
2888
+ "loss": 1.1799,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.72,
2893
+ "learning_rate": 3.9283749218128885e-06,
2894
+ "loss": 1.1347,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.72,
2899
+ "learning_rate": 3.890042304708758e-06,
2900
+ "loss": 1.1829,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.72,
2905
+ "learning_rate": 3.8518524160021876e-06,
2906
+ "loss": 1.1717,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.72,
2911
+ "learning_rate": 3.813806147807645e-06,
2912
+ "loss": 1.1431,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.72,
2917
+ "learning_rate": 3.775904388884615e-06,
2918
+ "loss": 1.1427,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.72,
2923
+ "learning_rate": 3.7381480246168665e-06,
2924
+ "loss": 1.1423,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.72,
2929
+ "learning_rate": 3.700537936991733e-06,
2930
+ "loss": 1.1204,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.73,
2935
+ "learning_rate": 3.6630750045795506e-06,
2936
+ "loss": 1.1612,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.73,
2941
+ "learning_rate": 3.625760102513103e-06,
2942
+ "loss": 1.1158,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.73,
2947
+ "learning_rate": 3.5885941024672e-06,
2948
+ "loss": 1.1642,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.73,
2953
+ "learning_rate": 3.5515778726382933e-06,
2954
+ "loss": 1.146,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.73,
2959
+ "learning_rate": 3.5147122777242203e-06,
2960
+ "loss": 1.1832,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.73,
2965
+ "learning_rate": 3.477998178903982e-06,
2966
+ "loss": 1.1724,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.74,
2971
+ "learning_rate": 3.4414364338176376e-06,
2972
+ "loss": 1.1447,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.74,
2977
+ "learning_rate": 3.405027896546277e-06,
2978
+ "loss": 1.1156,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.74,
2983
+ "learning_rate": 3.368773417592047e-06,
2984
+ "loss": 1.1168,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.74,
2989
+ "learning_rate": 3.3326738438583116e-06,
2990
+ "loss": 1.1344,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.74,
2995
+ "learning_rate": 3.2967300186298456e-06,
2996
+ "loss": 1.1161,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.74,
3001
+ "learning_rate": 3.2609427815531448e-06,
3002
+ "loss": 1.1473,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.74,
3007
+ "learning_rate": 3.2253129686168105e-06,
3008
+ "loss": 1.0854,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.75,
3013
+ "learning_rate": 3.18984141213203e-06,
3014
+ "loss": 1.1898,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.75,
3019
+ "learning_rate": 3.1545289407131128e-06,
3020
+ "loss": 1.1258,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.75,
3025
+ "learning_rate": 3.11937637925816e-06,
3026
+ "loss": 1.1519,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.75,
3031
+ "learning_rate": 3.0843845489297698e-06,
3032
+ "loss": 1.1353,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.75,
3037
+ "learning_rate": 3.0495542671358715e-06,
3038
+ "loss": 1.1341,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.75,
3043
+ "learning_rate": 3.0148863475106315e-06,
3044
+ "loss": 1.1278,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.75,
3049
+ "learning_rate": 2.98038159989543e-06,
3050
+ "loss": 1.1183,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.76,
3055
+ "learning_rate": 2.9460408303199696e-06,
3056
+ "loss": 1.1502,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.76,
3061
+ "learning_rate": 2.9118648409834205e-06,
3062
+ "loss": 1.1151,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.76,
3067
+ "learning_rate": 2.8778544302356938e-06,
3068
+ "loss": 1.0964,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.76,
3073
+ "learning_rate": 2.8440103925587904e-06,
3074
+ "loss": 1.1387,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.76,
3079
+ "learning_rate": 2.810333518548246e-06,
3080
+ "loss": 1.0998,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.76,
3085
+ "learning_rate": 2.7768245948946615e-06,
3086
+ "loss": 1.1495,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.77,
3091
+ "learning_rate": 2.743484404365314e-06,
3092
+ "loss": 1.153,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.77,
3097
+ "learning_rate": 2.7103137257858867e-06,
3098
+ "loss": 1.1609,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.77,
3103
+ "learning_rate": 2.6773133340222647e-06,
3104
+ "loss": 1.1579,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.77,
3109
+ "learning_rate": 2.6444839999624496e-06,
3110
+ "loss": 1.1728,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 0.77,
3115
+ "learning_rate": 2.611826490498527e-06,
3116
+ "loss": 1.1371,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 0.77,
3121
+ "learning_rate": 2.5793415685087797e-06,
3122
+ "loss": 1.1787,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 0.77,
3127
+ "learning_rate": 2.5470299928398424e-06,
3128
+ "loss": 1.1468,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 0.78,
3133
+ "learning_rate": 2.5148925182889916e-06,
3134
+ "loss": 1.1859,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 0.78,
3139
+ "learning_rate": 2.4829298955865022e-06,
3140
+ "loss": 1.088,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 0.78,
3145
+ "learning_rate": 2.451142871378124e-06,
3146
+ "loss": 1.1379,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 0.78,
3151
+ "learning_rate": 2.4195321882076295e-06,
3152
+ "loss": 1.1373,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 0.78,
3157
+ "learning_rate": 2.3880985844994674e-06,
3158
+ "loss": 1.2,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 0.78,
3163
+ "learning_rate": 2.3568427945415196e-06,
3164
+ "loss": 1.1295,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 0.78,
3169
+ "learning_rate": 2.3257655484679376e-06,
3170
+ "loss": 1.1727,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 0.79,
3175
+ "learning_rate": 2.2948675722421086e-06,
3176
+ "loss": 1.1532,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 0.79,
3181
+ "learning_rate": 2.264149587639668e-06,
3182
+ "loss": 1.1731,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 0.79,
3187
+ "learning_rate": 2.2336123122316642e-06,
3188
+ "loss": 1.1585,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 0.79,
3193
+ "learning_rate": 2.2032564593677773e-06,
3194
+ "loss": 1.0844,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 0.79,
3199
+ "learning_rate": 2.1730827381596677e-06,
3200
+ "loss": 1.1697,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 0.79,
3205
+ "learning_rate": 2.1430918534643996e-06,
3206
+ "loss": 1.107,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 0.79,
3211
+ "learning_rate": 2.1132845058679917e-06,
3212
+ "loss": 1.1906,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 0.8,
3217
+ "learning_rate": 2.083661391669043e-06,
3218
+ "loss": 1.1275,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 0.8,
3223
+ "learning_rate": 2.0542232028624585e-06,
3224
+ "loss": 1.0969,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 0.8,
3229
+ "learning_rate": 2.024970627123297e-06,
3230
+ "loss": 1.1445,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 0.8,
3235
+ "learning_rate": 1.9959043477907e-06,
3236
+ "loss": 1.0651,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 0.8,
3241
+ "learning_rate": 1.967025043851939e-06,
3242
+ "loss": 1.0988,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 0.8,
3247
+ "learning_rate": 1.9383333899265368e-06,
3248
+ "loss": 1.0866,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 0.81,
3253
+ "learning_rate": 1.9098300562505266e-06,
3254
+ "loss": 1.1574,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 0.81,
3259
+ "learning_rate": 1.8815157086607826e-06,
3260
+ "loss": 1.1884,
3261
+ "step": 542
3262
+ },
3263
+ {
3264
+ "epoch": 0.81,
3265
+ "learning_rate": 1.8533910085794714e-06,
3266
+ "loss": 1.1106,
3267
+ "step": 543
3268
+ },
3269
+ {
3270
+ "epoch": 0.81,
3271
+ "learning_rate": 1.8254566129985996e-06,
3272
+ "loss": 1.138,
3273
+ "step": 544
3274
+ },
3275
+ {
3276
+ "epoch": 0.81,
3277
+ "learning_rate": 1.7977131744646692e-06,
3278
+ "loss": 1.1997,
3279
+ "step": 545
3280
+ },
3281
+ {
3282
+ "epoch": 0.81,
3283
+ "learning_rate": 1.7701613410634367e-06,
3284
+ "loss": 1.1939,
3285
+ "step": 546
3286
+ },
3287
+ {
3288
+ "epoch": 0.81,
3289
+ "learning_rate": 1.7428017564047594e-06,
3290
+ "loss": 1.1176,
3291
+ "step": 547
3292
+ },
3293
+ {
3294
+ "epoch": 0.82,
3295
+ "learning_rate": 1.7156350596075777e-06,
3296
+ "loss": 1.1404,
3297
+ "step": 548
3298
+ },
3299
+ {
3300
+ "epoch": 0.82,
3301
+ "learning_rate": 1.6886618852849723e-06,
3302
+ "loss": 1.1449,
3303
+ "step": 549
3304
+ },
3305
+ {
3306
+ "epoch": 0.82,
3307
+ "learning_rate": 1.6618828635293561e-06,
3308
+ "loss": 1.1488,
3309
+ "step": 550
3310
+ },
3311
+ {
3312
+ "epoch": 0.82,
3313
+ "learning_rate": 1.6352986198977327e-06,
3314
+ "loss": 1.1442,
3315
+ "step": 551
3316
+ },
3317
+ {
3318
+ "epoch": 0.82,
3319
+ "learning_rate": 1.6089097753971061e-06,
3320
+ "loss": 1.0947,
3321
+ "step": 552
3322
+ },
3323
+ {
3324
+ "epoch": 0.82,
3325
+ "learning_rate": 1.5827169464699576e-06,
3326
+ "loss": 1.1533,
3327
+ "step": 553
3328
+ },
3329
+ {
3330
+ "epoch": 0.82,
3331
+ "learning_rate": 1.5567207449798517e-06,
3332
+ "loss": 1.1549,
3333
+ "step": 554
3334
+ },
3335
+ {
3336
+ "epoch": 0.83,
3337
+ "learning_rate": 1.5309217781971419e-06,
3338
+ "loss": 1.1368,
3339
+ "step": 555
3340
+ },
3341
+ {
3342
+ "epoch": 0.83,
3343
+ "learning_rate": 1.5053206487847893e-06,
3344
+ "loss": 1.1504,
3345
+ "step": 556
3346
+ },
3347
+ {
3348
+ "epoch": 0.83,
3349
+ "learning_rate": 1.4799179547842823e-06,
3350
+ "loss": 1.1365,
3351
+ "step": 557
3352
+ },
3353
+ {
3354
+ "epoch": 0.83,
3355
+ "learning_rate": 1.4547142896016586e-06,
3356
+ "loss": 1.1375,
3357
+ "step": 558
3358
+ },
3359
+ {
3360
+ "epoch": 0.83,
3361
+ "learning_rate": 1.4297102419936582e-06,
3362
+ "loss": 1.1443,
3363
+ "step": 559
3364
+ },
3365
+ {
3366
+ "epoch": 0.83,
3367
+ "learning_rate": 1.4049063960539488e-06,
3368
+ "loss": 1.1405,
3369
+ "step": 560
3370
+ },
3371
+ {
3372
+ "epoch": 0.83,
3373
+ "learning_rate": 1.3803033311995096e-06,
3374
+ "loss": 1.1526,
3375
+ "step": 561
3376
+ },
3377
+ {
3378
+ "epoch": 0.84,
3379
+ "learning_rate": 1.3559016221570663e-06,
3380
+ "loss": 1.0707,
3381
+ "step": 562
3382
+ },
3383
+ {
3384
+ "epoch": 0.84,
3385
+ "learning_rate": 1.3317018389496927e-06,
3386
+ "loss": 1.1649,
3387
+ "step": 563
3388
+ },
3389
+ {
3390
+ "epoch": 0.84,
3391
+ "learning_rate": 1.3077045468834714e-06,
3392
+ "loss": 1.1294,
3393
+ "step": 564
3394
+ },
3395
+ {
3396
+ "epoch": 0.84,
3397
+ "learning_rate": 1.2839103065343084e-06,
3398
+ "loss": 1.0976,
3399
+ "step": 565
3400
+ },
3401
+ {
3402
+ "epoch": 0.84,
3403
+ "learning_rate": 1.2603196737348211e-06,
3404
+ "loss": 1.1443,
3405
+ "step": 566
3406
+ },
3407
+ {
3408
+ "epoch": 0.84,
3409
+ "learning_rate": 1.2369331995613643e-06,
3410
+ "loss": 1.1315,
3411
+ "step": 567
3412
+ },
3413
+ {
3414
+ "epoch": 0.85,
3415
+ "learning_rate": 1.213751430321156e-06,
3416
+ "loss": 1.1398,
3417
+ "step": 568
3418
+ },
3419
+ {
3420
+ "epoch": 0.85,
3421
+ "learning_rate": 1.1907749075395126e-06,
3422
+ "loss": 1.1239,
3423
+ "step": 569
3424
+ },
3425
+ {
3426
+ "epoch": 0.85,
3427
+ "learning_rate": 1.168004167947202e-06,
3428
+ "loss": 1.1014,
3429
+ "step": 570
3430
+ },
3431
+ {
3432
+ "epoch": 0.85,
3433
+ "learning_rate": 1.1454397434679022e-06,
3434
+ "loss": 1.1451,
3435
+ "step": 571
3436
+ },
3437
+ {
3438
+ "epoch": 0.85,
3439
+ "learning_rate": 1.1230821612057764e-06,
3440
+ "loss": 1.1545,
3441
+ "step": 572
3442
+ },
3443
+ {
3444
+ "epoch": 0.85,
3445
+ "learning_rate": 1.1009319434331623e-06,
3446
+ "loss": 1.0954,
3447
+ "step": 573
3448
+ },
3449
+ {
3450
+ "epoch": 0.85,
3451
+ "learning_rate": 1.0789896075783734e-06,
3452
+ "loss": 1.1322,
3453
+ "step": 574
3454
+ },
3455
+ {
3456
+ "epoch": 0.86,
3457
+ "learning_rate": 1.0572556662136036e-06,
3458
+ "loss": 1.1098,
3459
+ "step": 575
3460
+ },
3461
+ {
3462
+ "epoch": 0.86,
3463
+ "learning_rate": 1.0357306270429623e-06,
3464
+ "loss": 1.1495,
3465
+ "step": 576
3466
+ },
3467
+ {
3468
+ "epoch": 0.86,
3469
+ "learning_rate": 1.014414992890611e-06,
3470
+ "loss": 1.1342,
3471
+ "step": 577
3472
+ },
3473
+ {
3474
+ "epoch": 0.86,
3475
+ "learning_rate": 9.933092616890127e-07,
3476
+ "loss": 1.1954,
3477
+ "step": 578
3478
+ },
3479
+ {
3480
+ "epoch": 0.86,
3481
+ "learning_rate": 9.724139264673116e-07,
3482
+ "loss": 1.1296,
3483
+ "step": 579
3484
+ },
3485
+ {
3486
+ "epoch": 0.86,
3487
+ "learning_rate": 9.517294753398043e-07,
3488
+ "loss": 1.1447,
3489
+ "step": 580
3490
+ },
3491
+ {
3492
+ "epoch": 0.86,
3493
+ "learning_rate": 9.312563914945461e-07,
3494
+ "loss": 1.082,
3495
+ "step": 581
3496
+ },
3497
+ {
3498
+ "epoch": 0.87,
3499
+ "learning_rate": 9.10995153182056e-07,
3500
+ "loss": 1.1625,
3501
+ "step": 582
3502
+ },
3503
+ {
3504
+ "epoch": 0.87,
3505
+ "learning_rate": 8.909462337041508e-07,
3506
+ "loss": 1.1774,
3507
+ "step": 583
3508
+ },
3509
+ {
3510
+ "epoch": 0.87,
3511
+ "learning_rate": 8.711101014028855e-07,
3512
+ "loss": 1.1183,
3513
+ "step": 584
3514
+ },
3515
+ {
3516
+ "epoch": 0.87,
3517
+ "learning_rate": 8.514872196496182e-07,
3518
+ "loss": 1.1269,
3519
+ "step": 585
3520
+ },
3521
+ {
3522
+ "epoch": 0.87,
3523
+ "learning_rate": 8.320780468341761e-07,
3524
+ "loss": 1.0736,
3525
+ "step": 586
3526
+ },
3527
+ {
3528
+ "epoch": 0.87,
3529
+ "learning_rate": 8.128830363541574e-07,
3530
+ "loss": 1.1115,
3531
+ "step": 587
3532
+ },
3533
+ {
3534
+ "epoch": 0.88,
3535
+ "learning_rate": 7.939026366043346e-07,
3536
+ "loss": 1.1085,
3537
+ "step": 588
3538
+ },
3539
+ {
3540
+ "epoch": 0.88,
3541
+ "learning_rate": 7.75137290966177e-07,
3542
+ "loss": 1.1869,
3543
+ "step": 589
3544
+ },
3545
+ {
3546
+ "epoch": 0.88,
3547
+ "learning_rate": 7.565874377975046e-07,
3548
+ "loss": 1.1166,
3549
+ "step": 590
3550
+ },
3551
+ {
3552
+ "epoch": 0.88,
3553
+ "learning_rate": 7.382535104222344e-07,
3554
+ "loss": 1.124,
3555
+ "step": 591
3556
+ },
3557
+ {
3558
+ "epoch": 0.88,
3559
+ "learning_rate": 7.201359371202698e-07,
3560
+ "loss": 1.1771,
3561
+ "step": 592
3562
+ },
3563
+ {
3564
+ "epoch": 0.88,
3565
+ "learning_rate": 7.022351411174866e-07,
3566
+ "loss": 1.1086,
3567
+ "step": 593
3568
+ },
3569
+ {
3570
+ "epoch": 0.88,
3571
+ "learning_rate": 6.845515405758518e-07,
3572
+ "loss": 1.1588,
3573
+ "step": 594
3574
+ },
3575
+ {
3576
+ "epoch": 0.89,
3577
+ "learning_rate": 6.670855485836525e-07,
3578
+ "loss": 1.1115,
3579
+ "step": 595
3580
+ },
3581
+ {
3582
+ "epoch": 0.89,
3583
+ "learning_rate": 6.498375731458529e-07,
3584
+ "loss": 1.1282,
3585
+ "step": 596
3586
+ },
3587
+ {
3588
+ "epoch": 0.89,
3589
+ "learning_rate": 6.32808017174551e-07,
3590
+ "loss": 1.16,
3591
+ "step": 597
3592
+ },
3593
+ {
3594
+ "epoch": 0.89,
3595
+ "learning_rate": 6.159972784795798e-07,
3596
+ "loss": 1.1252,
3597
+ "step": 598
3598
+ },
3599
+ {
3600
+ "epoch": 0.89,
3601
+ "learning_rate": 5.994057497592054e-07,
3602
+ "loss": 1.1086,
3603
+ "step": 599
3604
+ },
3605
+ {
3606
+ "epoch": 0.89,
3607
+ "learning_rate": 5.830338185909545e-07,
3608
+ "loss": 1.1208,
3609
+ "step": 600
3610
+ },
3611
+ {
3612
+ "epoch": 0.89,
3613
+ "learning_rate": 5.668818674225696e-07,
3614
+ "loss": 1.1315,
3615
+ "step": 601
3616
+ },
3617
+ {
3618
+ "epoch": 0.9,
3619
+ "learning_rate": 5.509502735630601e-07,
3620
+ "loss": 1.0897,
3621
+ "step": 602
3622
+ },
3623
+ {
3624
+ "epoch": 0.9,
3625
+ "learning_rate": 5.352394091739022e-07,
3626
+ "loss": 1.1225,
3627
+ "step": 603
3628
+ },
3629
+ {
3630
+ "epoch": 0.9,
3631
+ "learning_rate": 5.197496412603365e-07,
3632
+ "loss": 1.1742,
3633
+ "step": 604
3634
+ },
3635
+ {
3636
+ "epoch": 0.9,
3637
+ "learning_rate": 5.044813316627994e-07,
3638
+ "loss": 1.1343,
3639
+ "step": 605
3640
+ },
3641
+ {
3642
+ "epoch": 0.9,
3643
+ "learning_rate": 4.894348370484648e-07,
3644
+ "loss": 1.1333,
3645
+ "step": 606
3646
+ },
3647
+ {
3648
+ "epoch": 0.9,
3649
+ "learning_rate": 4.746105089029229e-07,
3650
+ "loss": 1.154,
3651
+ "step": 607
3652
+ },
3653
+ {
3654
+ "epoch": 0.9,
3655
+ "learning_rate": 4.6000869352195607e-07,
3656
+ "loss": 1.0746,
3657
+ "step": 608
3658
+ },
3659
+ {
3660
+ "epoch": 0.91,
3661
+ "learning_rate": 4.4562973200346413e-07,
3662
+ "loss": 1.1104,
3663
+ "step": 609
3664
+ },
3665
+ {
3666
+ "epoch": 0.91,
3667
+ "learning_rate": 4.314739602394813e-07,
3668
+ "loss": 1.1653,
3669
+ "step": 610
3670
+ },
3671
+ {
3672
+ "epoch": 0.91,
3673
+ "learning_rate": 4.1754170890833777e-07,
3674
+ "loss": 1.1645,
3675
+ "step": 611
3676
+ },
3677
+ {
3678
+ "epoch": 0.91,
3679
+ "learning_rate": 4.038333034669406e-07,
3680
+ "loss": 1.1725,
3681
+ "step": 612
3682
+ },
3683
+ {
3684
+ "epoch": 0.91,
3685
+ "learning_rate": 3.903490641431573e-07,
3686
+ "loss": 1.1453,
3687
+ "step": 613
3688
+ },
3689
+ {
3690
+ "epoch": 0.91,
3691
+ "learning_rate": 3.770893059283465e-07,
3692
+ "loss": 1.1292,
3693
+ "step": 614
3694
+ },
3695
+ {
3696
+ "epoch": 0.92,
3697
+ "learning_rate": 3.6405433856999684e-07,
3698
+ "loss": 1.0625,
3699
+ "step": 615
3700
+ },
3701
+ {
3702
+ "epoch": 0.92,
3703
+ "learning_rate": 3.5124446656448654e-07,
3704
+ "loss": 1.1049,
3705
+ "step": 616
3706
+ },
3707
+ {
3708
+ "epoch": 0.92,
3709
+ "learning_rate": 3.3865998914997645e-07,
3710
+ "loss": 1.0797,
3711
+ "step": 617
3712
+ },
3713
+ {
3714
+ "epoch": 0.92,
3715
+ "learning_rate": 3.2630120029942034e-07,
3716
+ "loss": 1.0995,
3717
+ "step": 618
3718
+ },
3719
+ {
3720
+ "epoch": 0.92,
3721
+ "learning_rate": 3.1416838871368925e-07,
3722
+ "loss": 1.1127,
3723
+ "step": 619
3724
+ },
3725
+ {
3726
+ "epoch": 0.92,
3727
+ "learning_rate": 3.0226183781483786e-07,
3728
+ "loss": 1.1122,
3729
+ "step": 620
3730
+ },
3731
+ {
3732
+ "epoch": 0.92,
3733
+ "learning_rate": 2.90581825739481e-07,
3734
+ "loss": 1.1484,
3735
+ "step": 621
3736
+ },
3737
+ {
3738
+ "epoch": 0.93,
3739
+ "learning_rate": 2.791286253322856e-07,
3740
+ "loss": 1.0956,
3741
+ "step": 622
3742
+ },
3743
+ {
3744
+ "epoch": 0.93,
3745
+ "learning_rate": 2.679025041396155e-07,
3746
+ "loss": 1.0632,
3747
+ "step": 623
3748
+ },
3749
+ {
3750
+ "epoch": 0.93,
3751
+ "learning_rate": 2.569037244032657e-07,
3752
+ "loss": 1.1184,
3753
+ "step": 624
3754
+ },
3755
+ {
3756
+ "epoch": 0.93,
3757
+ "learning_rate": 2.461325430543482e-07,
3758
+ "loss": 1.1178,
3759
+ "step": 625
3760
+ },
3761
+ {
3762
+ "epoch": 0.93,
3763
+ "learning_rate": 2.3558921170728e-07,
3764
+ "loss": 1.1309,
3765
+ "step": 626
3766
+ },
3767
+ {
3768
+ "epoch": 0.93,
3769
+ "learning_rate": 2.2527397665391137e-07,
3770
+ "loss": 1.1154,
3771
+ "step": 627
3772
+ },
3773
+ {
3774
+ "epoch": 0.93,
3775
+ "learning_rate": 2.1518707885777147e-07,
3776
+ "loss": 1.1322,
3777
+ "step": 628
3778
+ },
3779
+ {
3780
+ "epoch": 0.94,
3781
+ "learning_rate": 2.0532875394844053e-07,
3782
+ "loss": 1.1287,
3783
+ "step": 629
3784
+ },
3785
+ {
3786
+ "epoch": 0.94,
3787
+ "learning_rate": 1.9569923221604224e-07,
3788
+ "loss": 1.1287,
3789
+ "step": 630
3790
+ },
3791
+ {
3792
+ "epoch": 0.94,
3793
+ "learning_rate": 1.8629873860586567e-07,
3794
+ "loss": 1.0926,
3795
+ "step": 631
3796
+ },
3797
+ {
3798
+ "epoch": 0.94,
3799
+ "learning_rate": 1.7712749271311392e-07,
3800
+ "loss": 1.1313,
3801
+ "step": 632
3802
+ },
3803
+ {
3804
+ "epoch": 0.94,
3805
+ "learning_rate": 1.681857087777672e-07,
3806
+ "loss": 1.1336,
3807
+ "step": 633
3808
+ },
3809
+ {
3810
+ "epoch": 0.94,
3811
+ "learning_rate": 1.5947359567958677e-07,
3812
+ "loss": 1.1612,
3813
+ "step": 634
3814
+ },
3815
+ {
3816
+ "epoch": 0.95,
3817
+ "learning_rate": 1.5099135693322776e-07,
3818
+ "loss": 1.1071,
3819
+ "step": 635
3820
+ },
3821
+ {
3822
+ "epoch": 0.95,
3823
+ "learning_rate": 1.4273919068349184e-07,
3824
+ "loss": 1.102,
3825
+ "step": 636
3826
+ },
3827
+ {
3828
+ "epoch": 0.95,
3829
+ "learning_rate": 1.3471728970068986e-07,
3830
+ "loss": 1.1045,
3831
+ "step": 637
3832
+ },
3833
+ {
3834
+ "epoch": 0.95,
3835
+ "learning_rate": 1.2692584137615205e-07,
3836
+ "loss": 1.125,
3837
+ "step": 638
3838
+ },
3839
+ {
3840
+ "epoch": 0.95,
3841
+ "learning_rate": 1.1936502771783488e-07,
3842
+ "loss": 1.1887,
3843
+ "step": 639
3844
+ },
3845
+ {
3846
+ "epoch": 0.95,
3847
+ "learning_rate": 1.1203502534608113e-07,
3848
+ "loss": 1.0997,
3849
+ "step": 640
3850
+ },
3851
+ {
3852
+ "epoch": 0.95,
3853
+ "learning_rate": 1.0493600548948879e-07,
3854
+ "loss": 1.0907,
3855
+ "step": 641
3856
+ },
3857
+ {
3858
+ "epoch": 0.96,
3859
+ "learning_rate": 9.806813398091419e-08,
3860
+ "loss": 1.1638,
3861
+ "step": 642
3862
+ },
3863
+ {
3864
+ "epoch": 0.96,
3865
+ "learning_rate": 9.143157125359403e-08,
3866
+ "loss": 1.1088,
3867
+ "step": 643
3868
+ },
3869
+ {
3870
+ "epoch": 0.96,
3871
+ "learning_rate": 8.502647233740169e-08,
3872
+ "loss": 1.069,
3873
+ "step": 644
3874
+ },
3875
+ {
3876
+ "epoch": 0.96,
3877
+ "learning_rate": 7.885298685522235e-08,
3878
+ "loss": 1.1003,
3879
+ "step": 645
3880
+ },
3881
+ {
3882
+ "epoch": 0.96,
3883
+ "learning_rate": 7.291125901946027e-08,
3884
+ "loss": 1.1347,
3885
+ "step": 646
3886
+ },
3887
+ {
3888
+ "epoch": 0.96,
3889
+ "learning_rate": 6.720142762867032e-08,
3890
+ "loss": 1.1776,
3891
+ "step": 647
3892
+ },
3893
+ {
3894
+ "epoch": 0.96,
3895
+ "learning_rate": 6.172362606431281e-08,
3896
+ "loss": 1.1104,
3897
+ "step": 648
3898
+ },
3899
+ {
3900
+ "epoch": 0.97,
3901
+ "learning_rate": 5.647798228764156e-08,
3902
+ "loss": 1.1623,
3903
+ "step": 649
3904
+ },
3905
+ {
3906
+ "epoch": 0.97,
3907
+ "learning_rate": 5.146461883671072e-08,
3908
+ "loss": 1.0729,
3909
+ "step": 650
3910
+ },
3911
+ {
3912
+ "epoch": 0.97,
3913
+ "learning_rate": 4.6683652823513725e-08,
3914
+ "loss": 1.0913,
3915
+ "step": 651
3916
+ },
3917
+ {
3918
+ "epoch": 0.97,
3919
+ "learning_rate": 4.2135195931249925e-08,
3920
+ "loss": 1.149,
3921
+ "step": 652
3922
+ },
3923
+ {
3924
+ "epoch": 0.97,
3925
+ "learning_rate": 3.781935441171225e-08,
3926
+ "loss": 1.0957,
3927
+ "step": 653
3928
+ },
3929
+ {
3930
+ "epoch": 0.97,
3931
+ "learning_rate": 3.373622908280916e-08,
3932
+ "loss": 1.0875,
3933
+ "step": 654
3934
+ },
3935
+ {
3936
+ "epoch": 0.97,
3937
+ "learning_rate": 2.988591532620322e-08,
3938
+ "loss": 1.1031,
3939
+ "step": 655
3940
+ },
3941
+ {
3942
+ "epoch": 0.98,
3943
+ "learning_rate": 2.6268503085089547e-08,
3944
+ "loss": 1.1561,
3945
+ "step": 656
3946
+ },
3947
+ {
3948
+ "epoch": 0.98,
3949
+ "learning_rate": 2.2884076862089712e-08,
3950
+ "loss": 1.2111,
3951
+ "step": 657
3952
+ },
3953
+ {
3954
+ "epoch": 0.98,
3955
+ "learning_rate": 1.973271571728441e-08,
3956
+ "loss": 1.1655,
3957
+ "step": 658
3958
+ },
3959
+ {
3960
+ "epoch": 0.98,
3961
+ "learning_rate": 1.6814493266357202e-08,
3962
+ "loss": 1.1432,
3963
+ "step": 659
3964
+ },
3965
+ {
3966
+ "epoch": 0.98,
3967
+ "learning_rate": 1.4129477678884728e-08,
3968
+ "loss": 1.1066,
3969
+ "step": 660
3970
+ },
3971
+ {
3972
+ "epoch": 0.98,
3973
+ "learning_rate": 1.1677731676734694e-08,
3974
+ "loss": 1.1371,
3975
+ "step": 661
3976
+ },
3977
+ {
3978
+ "epoch": 0.99,
3979
+ "learning_rate": 9.459312532608122e-09,
3980
+ "loss": 1.1792,
3981
+ "step": 662
3982
+ },
3983
+ {
3984
+ "epoch": 0.99,
3985
+ "learning_rate": 7.474272068698219e-09,
3986
+ "loss": 1.0863,
3987
+ "step": 663
3988
+ },
3989
+ {
3990
+ "epoch": 0.99,
3991
+ "learning_rate": 5.722656655482439e-09,
3992
+ "loss": 1.1954,
3993
+ "step": 664
3994
+ },
3995
+ {
3996
+ "epoch": 0.99,
3997
+ "learning_rate": 4.204507210633368e-09,
3998
+ "loss": 1.1196,
3999
+ "step": 665
4000
+ },
4001
+ {
4002
+ "epoch": 0.99,
4003
+ "learning_rate": 2.9198591980705847e-09,
4004
+ "loss": 1.1339,
4005
+ "step": 666
4006
+ },
4007
+ {
4008
+ "epoch": 0.99,
4009
+ "learning_rate": 1.8687426271246646e-09,
4010
+ "loss": 1.1454,
4011
+ "step": 667
4012
+ },
4013
+ {
4014
+ "epoch": 0.99,
4015
+ "learning_rate": 1.0511820518432915e-09,
4016
+ "loss": 1.1141,
4017
+ "step": 668
4018
+ },
4019
+ {
4020
+ "epoch": 1.0,
4021
+ "learning_rate": 4.671965704128312e-10,
4022
+ "loss": 1.2043,
4023
+ "step": 669
4024
+ },
4025
+ {
4026
+ "epoch": 1.0,
4027
+ "learning_rate": 1.167998247131319e-10,
4028
+ "loss": 1.1129,
4029
+ "step": 670
4030
+ },
4031
+ {
4032
+ "epoch": 1.0,
4033
+ "learning_rate": 0.0,
4034
+ "loss": 1.0999,
4035
+ "step": 671
4036
+ },
4037
+ {
4038
+ "epoch": 1.0,
4039
+ "step": 671,
4040
+ "total_flos": 2.178765965849998e+19,
4041
+ "train_loss": 1.1755684873563876,
4042
+ "train_runtime": 47161.9361,
4043
+ "train_samples_per_second": 1.823,
4044
+ "train_steps_per_second": 0.014
4045
+ }
4046
+ ],
4047
+ "logging_steps": 1.0,
4048
+ "max_steps": 671,
4049
+ "num_input_tokens_seen": 0,
4050
+ "num_train_epochs": 1,
4051
+ "save_steps": 200,
4052
+ "total_flos": 2.178765965849998e+19,
4053
+ "train_batch_size": 2,
4054
+ "trial_name": null,
4055
+ "trial_params": null
4056
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9406b4f3c8d431c0b7315b7138e16a21e799211e92743859523278b45a652a8
3
+ size 6968
training_log.txt ADDED
The diff for this file is too large to render. See raw diff