Abhaykoul commited on
Commit
3dbd07c
·
verified ·
1 Parent(s): 8ad96af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -169
README.md CHANGED
@@ -1,199 +1,92 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
 
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- ## Glossary [optional]
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - EMO
5
+ pipeline_tag: text-generation
6
+ base_model: microsoft/Phi-3-mini-128k-instruct
7
  ---
8
+ # EMO-phi-128k
9
 
10
+ EMO-phi-128k is an emotional intelligence conversational AI model fine-tuned from Microsoft's Phi-3-mini-128k-instruct model. It is designed to engage in open-ended dialogue while exhibiting emotional understanding and emotional intelligence capabilities.
 
 
 
 
11
 
12
  ## Model Details
13
 
14
+ - **Developer**: OEvortex
15
+ - **Model Type**: Transformer-based language model
16
+ - **Language**: English
17
+ - **License**: MIT
18
+ - **Base Model**: microsoft/Phi-3-mini-128k-instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ ## Model Description
21
 
22
+ EMO-phi-128k is a 128k parameter conversational AI model that has been fine-tuned to incorporate emotional intelligence and emotional understanding capabilities. It aims to engage in emotionally aware and contextual dialogue by recognizing and responding appropriately to the emotional tones and sentiments expressed by the user.
23
 
24
+ While inheriting the strong language understanding and generation capabilities of its base model, EMO-phi-128k has been specifically optimized for emotional intelligence tasks through additional fine-tuning on emotional dialogue datasets.
25
 
26
+ ## Intended Uses
27
 
28
+ - Emotional Support / Conversational Companion
29
+ - Customer Service Chatbots (with emotional intelligence)
30
+ - Creative Writing Assistance (with emotional awareness)
31
+ - Psychological/Therapeutic Applications
32
 
33
+ ## Limitations and Risks
34
 
35
+ As an AI system, EMO-phi-128k may exhibit biases present in its training data. Its true emotional intelligence capabilities are not fully known or verified. The model should be used with caution, especially in sensitive or high-stakes applications involving mental health, therapy, or counseling. Proper human oversight is recommended.
36
 
37
+ Additionally, like all language models, EMO-phi-128k is susceptible to generating harmful, biased, or explicit content if prompted in an unsafe manner. Safety considerations should be taken into account when deploying or interacting with the model.
38
 
39
+ ## How to Use
40
 
41
+ You can load and use the EMO-phi-128k model with the Transformers library in Python:
42
 
43
+ ```python
44
+ import torch
45
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
46
 
47
+ torch.random.manual_seed(0)
48
 
49
+ model = AutoModelForCausalLM.from_pretrained(
50
+ "OEvortex/EMO-phi-128k",
51
+ device_map="cuda",
52
+ torch_dtype="auto",
53
+ trust_remote_code=True,
54
+ ignore_mismatched_sizes=True
55
+ )
56
+ tokenizer = AutoTokenizer.from_pretrained("OEvortex/EMO-phi-128k")
57
 
58
+ messages = [
59
+ {"role": "system", "content": "You are a helpful Emotional intelligence named as EMO-phi, remember to always answer users question in EMO style."},
60
+ {"role": "user", "content": "My best friend recently lost their parent to cancer after a long battle. They are understandably devastated and struggling with grief."},
61
+ ]
62
 
63
+ # Prepare the input for the pipeline
64
+ formatted_messages = ""
65
+ for message in messages:
66
+ formatted_messages += f"<|im_start|>{message['role']}\n{message['content']}<|im_end|>\n"
67
 
68
+ # Optionally, add a generation prompt
69
+ add_generation_prompt = True # Set this to True if you want to add a generation prompt
70
+ if add_generation_prompt:
71
+ formatted_messages += "<|im_start|>assistant\n"
72
 
73
+ pipe = pipeline(
74
+ "text-generation",
75
+ model=model,
76
+ tokenizer=tokenizer,
77
+ )
78
 
79
+ generation_args = {
80
+ "max_new_tokens": 500,
81
+ "return_full_text": False,
82
+ "temperature": 0.6,
83
+ "do_sample": True,
84
+ }
85
 
86
+ output = pipe(formatted_messages, **generation_args)
87
+ print(output[0]['generated_text'])
88
 
89
+ ```
90
 
 
91
 
 
92