Nurmukhamed commited on
Commit
df79252
1 Parent(s): c05a595

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 271.27 +/- 26.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be11297c3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be11297c430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be11297c4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be11297c550>", "_build": "<function ActorCriticPolicy._build at 0x7be11297c5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7be11297c670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be11297c700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be11297c790>", "_predict": "<function ActorCriticPolicy._predict at 0x7be11297c820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be11297c8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be11297c940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be11297c9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be11295eec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692747750373655919, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPdYjyJv7g/TujoPnSV6D42tiW8ni/YvAAAAAAAAAAAc+UQvlsVcz/DG2m+y9XxvnROIb5lE5e9AAAAAAAAAACaFbO8e1XlO8vYhLwHJim+SVv+uyWpcrwAAAAAAAAAAGZ5Ub1Iu4O6SpgaNBHUDi5Hvpk6h3+QswAAgD8AAIA/mkSsvF3wtj4+coK91A6vvpRrIb2/aoE9AAAAAAAAAADN3gU9KRB5ugO6t7ZPeISxlPD5OQaX2TUAAIA/AACAPxp3NL2YPeM+cljivVCAvb7Lihq9Qmo2vAAAAAAAAAAAmlrOPGhToT6yHYe9CuOkvobZrjx2RSQ9AAAAAAAAAAAzmHC9j09HPdXE5DwTSoe+lh8BvbzkoL0AAAAAAAAAAGaCt7zXWHk8YvkoPYRpLr7+s4y8zYhsvQAAAAAAAAAAM5Mou5GUsz/aZoW+EeG0vunGQztqvXE9AAAAAAAAAABgzH2+MVPsPgTlkT0UX8C+xIghvlgG5T0AAAAAAAAAAABkNTwwDqw/kxzePNmf274riOc7vnOlPQAAAAAAAAAAzbGNPtMwMT+WXI08hV3cvhu/pj6z1Je9AAAAAAAAAADNFhK99oxhuvjN4TpWhw42uFRYugajAroAAIA/AACAP3UTgr4Noxq9CuuCu4CUArqH9IY+BdfCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFsVEiMYMyMAWyUTVcBjAF0lEdAldHgr1/UfHV9lChoBkdAb+J/p+tr9GgHS/hoCEdAldJF36hxpHV9lChoBkdAcgP8fms/6mgHTTwCaAhHQJXS0bVBlc11fZQoaAZHQHFGGgJ1JUZoB0vhaAhHQJXU4JF9a2Z1fZQoaAZHQHF0ZbhWHUNoB03lAWgIR0CV1jonKGL2dX2UKGgGR0Bmj8ZeiSJTaAdN6ANoCEdAldZTY/Vy3nV9lChoBkdATzxvvSc9XGgHS65oCEdAldb12A5Jb3V9lChoBkdAczmTcIqsl2gHTRQBaAhHQJXXIXoC+111fZQoaAZHQHCtEuYhMaloB00RAWgIR0CV2BltTDO1dX2UKGgGR0ByOHCSA6MjaAdL+WgIR0CV2IqZtvXLdX2UKGgGR0BxTPyFwkxAaAdNFwFoCEdAldj+c+aBqnV9lChoBkdAcaNWTX8O1GgHS/doCEdAldkOjh1klXV9lChoBkdAbNweGO+7DmgHS+poCEdAldkv8AJb+3V9lChoBkdAb95SqEOAiGgHTR8BaAhHQJXZh5VwPy11fZQoaAZHQHPPL+HaewtoB00LAWgIR0CV2ppoK2KEdX2UKGgGR0Bt0dahYeT3aAdNJAFoCEdAldrxQSBbwHV9lChoBkdAblvapPykK2gHTYQBaAhHQJXbfhn8Koh1fZQoaAZHQHEOJmh/RVpoB00VAWgIR0CV244b0e2edX2UKGgGR0BxrhV2icoZaAdNFwFoCEdAld11wtJ4B3V9lChoBkdAcX6FfAsTWWgHS/RoCEdAld5eEEkjYHV9lChoBkdAdAELx7RfGGgHTTgBaAhHQJXgCU+s5n11fZQoaAZHQHKH5UYKpkxoB00GAWgIR0CV4C3iJfpmdX2UKGgGR0Bv/lWjoIOZaAdL/WgIR0CV4MrO7g89dX2UKGgGR0BwMjnV5KODaAdNVAFoCEdAleD16E8JU3V9lChoBkdAcxmwdsBQvmgHTRkBaAhHQJXh1Z9uxbB1fZQoaAZHQG6DGgam4y5oB01gAWgIR0CV4lupjtojdX2UKGgGR0BZoH0K7ZnMaAdN6ANoCEdAleNrzf779HV9lChoBkdAcSK2tuDSPWgHTSMBaAhHQJXlOqFRHgB1fZQoaAZHQHK+grlNlAhoB01tAWgIR0CV5YOiWVu8dX2UKGgGR0BxhbNs3yZsaAdL/WgIR0CV5mM6zVtodX2UKGgGR0BxkXfaYeDGaAdNcAFoCEdAlebiVKPGQ3V9lChoBkdAch/0gbIcR2gHTYABaAhHQJXoGP91loV1fZQoaAZHQHFohJRO1v5oB0v+aAhHQJXp4pBomHB1fZQoaAZHQHEG1A7gbZRoB03iAWgIR0CV6fBuXNTtdX2UKGgGR0Bxtz6WPcSHaAdNOAFoCEdAlepLFbVz63V9lChoBkdAcA4x9oexOmgHS/doCEdAleqqGL1mJ3V9lChoBkdAcgmy9VWCE2gHTQIBaAhHQJXq5/lQuVZ1fZQoaAZHQG9grZSNwR5oB00jAmgIR0CV6/HktEofdX2UKGgGR0BxdtKvmozfaAdNMgFoCEdAlexJvo/zKHV9lChoBkdAcIgwo9cKPWgHTRMBaAhHQJXs6KqGUOd1fZQoaAZHQG4u+az/p+toB00HAWgIR0CV7QVS4vvjdX2UKGgGR0BzkSJhvze5aAdL52gIR0CWB4Eh7mdRdX2UKGgGR0BxpJPfsNUgaAdNLwFoCEdAlgiURaouPHV9lChoBkdAcMyLw4KhMGgHTRIBaAhHQJYJuEOAiFF1fZQoaAZHQHG/NHc1wYNoB0v6aAhHQJYJxBhQWN51fZQoaAZHQHHbAiFCb+doB0v3aAhHQJYKMXSBshx1fZQoaAZHQFB87V8Ti85oB0u+aAhHQJYKkSQHRkV1fZQoaAZHQG72u5jH4oJoB0vcaAhHQJYM29DhLoR1fZQoaAZHQHHsIXfqHGloB0vuaAhHQJYNByU9pyp1fZQoaAZHQHDhpGnXNC9oB0v5aAhHQJYNGrPt2LZ1fZQoaAZHQG627ItDlYFoB00FAWgIR0CWDnK15Sm7dX2UKGgGR0BxMkG8mKIjaAdL82gIR0CWD1RL9MsZdX2UKGgGR0BxyIhA4XGfaAdNUgFoCEdAlg9jFqBVdXV9lChoBkdActNUJOWSlmgHTREBaAhHQJYRFY1YQrd1fZQoaAZHQHGP0KJEYwZoB00fAWgIR0CWEZ9wWFewdX2UKGgGR0BJ7dS2phnbaAdLumgIR0CWEdRpUPxydX2UKGgGR0BxdR+3H7xeaAdL/GgIR0CWEe3DNyHVdX2UKGgGR0BxtLpwCKaYaAdNVQFoCEdAlhJrQLNOd3V9lChoBkdAcEiVLSNOumgHTQgBaAhHQJYTyoQ4CIV1fZQoaAZHQHA7gKa5PM1oB00PAWgIR0CWFAn3+MqCdX2UKGgGR0BxPbtzCDVZaAdNQAFoCEdAlhS6pDNQj3V9lChoBkdAcb/HJtBOYmgHTRgBaAhHQJYU7XNC7bt1fZQoaAZHQHB9Gecx0uFoB0viaAhHQJYVADRtxdZ1fZQoaAZHQHH5TUI9kjJoB00rAWgIR0CWFwMGorFwdX2UKGgGR0Bxea/+KjzqaAdNBgFoCEdAlheVY2bXpXV9lChoBkdAcKnqbSZ0CGgHTToBaAhHQJYXpWq94/x1fZQoaAZHQHFd4RujynVoB00hAWgIR0CWF87p3X7MdX2UKGgGR0Bxo9p8F6iTaAdNEwFoCEdAlhgAuAZsK3V9lChoBkdAYn0Vu76HkGgHTegDaAhHQJYYjkYGdI51fZQoaAZHQG28BlMAWBVoB00WAWgIR0CWGVqebutwdX2UKGgGR0BwEleeFtbcaAdNCwFoCEdAlhnXymQ8wHV9lChoBkdAcCqms/6frmgHTQcBaAhHQJYaQLjPv8Z1fZQoaAZHQHB6gckt29toB00DAWgIR0CWG3eb/ffodX2UKGgGR0Byf64mTkhiaAdNSAFoCEdAlhuORoysS3V9lChoBkdAcgxXrdFfA2gHS+BoCEdAlhuL6DXe33V9lChoBkdAcTpeaKDTSmgHS+5oCEdAlhu9oWYWtXV9lChoBkdASOCExqO94GgHS59oCEdAlhw2Mju8b3V9lChoBkdAcXuLnLaEjGgHTQ8BaAhHQJYc7s7dSEV1fZQoaAZHQHJJLL+xW1doB001AWgIR0CWHRu4PPLQdX2UKGgGR0BxEBhy8zyjaAdL52gIR0CWHnouf29MdX2UKGgGR0BxFF/+bVjJaAdNAAFoCEdAlh8aOktVaXV9lChoBkdAcaq7YkE9uGgHS/doCEdAlh8xZyMkyHV9lChoBkdAcrsYyfthNWgHTUABaAhHQJYgfDR+jM51fZQoaAZHQHFzgTAWSEFoB00UAWgIR0CWIafdhy80dX2UKGgGR0Byofuv2Xb/aAdNDAFoCEdAliHqJIlMRHV9lChoBkdAbzS1qnFYMmgHS/9oCEdAliH0WIoE0XV9lChoBkdAc3OK+i8Fp2gHTUgBaAhHQJYiagQHzH11fZQoaAZHQHH3O+ZgG8poB0vraAhHQJYikfkmx+t1fZQoaAZHQG78/XXiBGxoB00BAWgIR0CWI0cafjCIdX2UKGgGR0BxZlky1uzhaAdL/WgIR0CWI165Xlr/dX2UKGgGR0BtLoK2KEWZaAdL/GgIR0CWI9OsDGLldX2UKGgGR0BwLVnJ1aGIaAdNLAFoCEdAliR2Yv38GnV9lChoBkdAcX1vXK8tgGgHTRwBaAhHQJYlj+3pfQd1fZQoaAZHQHK6IHgP3BZoB00qAWgIR0CWJc95hSccdX2UKGgGR0ByzOoIfKZEaAdNAgFoCEdAliYv7aZhKHV9lChoBkdAcVhLThHby2gHS/VoCEdAliZd0FKTS3V9lChoBkdATf4a99MK1GgHS6xoCEdAlidULYwqRXV9lChoBkdAcJF/nGKhtmgHS9xoCEdAlife0kWyknV9lChoBkdAcfcRwIdELGgHS+loCEdAliiM81XNknV9lChoBkdAbI8Ft8/lhmgHTRYBaAhHQJYol/7SApd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:267799c53c6c1fa5f47801cc19a02c5adaafbdb2f8d1b6a8d02daee6344e190f
3
+ size 146710
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7be11297c3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be11297c430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be11297c4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be11297c550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7be11297c5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7be11297c670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be11297c700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be11297c790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7be11297c820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be11297c8b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be11297c940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be11297c9d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7be11295eec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1692747750373655919,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPdYjyJv7g/TujoPnSV6D42tiW8ni/YvAAAAAAAAAAAc+UQvlsVcz/DG2m+y9XxvnROIb5lE5e9AAAAAAAAAACaFbO8e1XlO8vYhLwHJim+SVv+uyWpcrwAAAAAAAAAAGZ5Ub1Iu4O6SpgaNBHUDi5Hvpk6h3+QswAAgD8AAIA/mkSsvF3wtj4+coK91A6vvpRrIb2/aoE9AAAAAAAAAADN3gU9KRB5ugO6t7ZPeISxlPD5OQaX2TUAAIA/AACAPxp3NL2YPeM+cljivVCAvb7Lihq9Qmo2vAAAAAAAAAAAmlrOPGhToT6yHYe9CuOkvobZrjx2RSQ9AAAAAAAAAAAzmHC9j09HPdXE5DwTSoe+lh8BvbzkoL0AAAAAAAAAAGaCt7zXWHk8YvkoPYRpLr7+s4y8zYhsvQAAAAAAAAAAM5Mou5GUsz/aZoW+EeG0vunGQztqvXE9AAAAAAAAAABgzH2+MVPsPgTlkT0UX8C+xIghvlgG5T0AAAAAAAAAAABkNTwwDqw/kxzePNmf274riOc7vnOlPQAAAAAAAAAAzbGNPtMwMT+WXI08hV3cvhu/pj6z1Je9AAAAAAAAAADNFhK99oxhuvjN4TpWhw42uFRYugajAroAAIA/AACAP3UTgr4Noxq9CuuCu4CUArqH9IY+BdfCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFsVEiMYMyMAWyUTVcBjAF0lEdAldHgr1/UfHV9lChoBkdAb+J/p+tr9GgHS/hoCEdAldJF36hxpHV9lChoBkdAcgP8fms/6mgHTTwCaAhHQJXS0bVBlc11fZQoaAZHQHFGGgJ1JUZoB0vhaAhHQJXU4JF9a2Z1fZQoaAZHQHF0ZbhWHUNoB03lAWgIR0CV1jonKGL2dX2UKGgGR0Bmj8ZeiSJTaAdN6ANoCEdAldZTY/Vy3nV9lChoBkdATzxvvSc9XGgHS65oCEdAldb12A5Jb3V9lChoBkdAczmTcIqsl2gHTRQBaAhHQJXXIXoC+111fZQoaAZHQHCtEuYhMaloB00RAWgIR0CV2BltTDO1dX2UKGgGR0ByOHCSA6MjaAdL+WgIR0CV2IqZtvXLdX2UKGgGR0BxTPyFwkxAaAdNFwFoCEdAldj+c+aBqnV9lChoBkdAcaNWTX8O1GgHS/doCEdAldkOjh1klXV9lChoBkdAbNweGO+7DmgHS+poCEdAldkv8AJb+3V9lChoBkdAb95SqEOAiGgHTR8BaAhHQJXZh5VwPy11fZQoaAZHQHPPL+HaewtoB00LAWgIR0CV2ppoK2KEdX2UKGgGR0Bt0dahYeT3aAdNJAFoCEdAldrxQSBbwHV9lChoBkdAblvapPykK2gHTYQBaAhHQJXbfhn8Koh1fZQoaAZHQHEOJmh/RVpoB00VAWgIR0CV244b0e2edX2UKGgGR0BxrhV2icoZaAdNFwFoCEdAld11wtJ4B3V9lChoBkdAcX6FfAsTWWgHS/RoCEdAld5eEEkjYHV9lChoBkdAdAELx7RfGGgHTTgBaAhHQJXgCU+s5n11fZQoaAZHQHKH5UYKpkxoB00GAWgIR0CV4C3iJfpmdX2UKGgGR0Bv/lWjoIOZaAdL/WgIR0CV4MrO7g89dX2UKGgGR0BwMjnV5KODaAdNVAFoCEdAleD16E8JU3V9lChoBkdAcxmwdsBQvmgHTRkBaAhHQJXh1Z9uxbB1fZQoaAZHQG6DGgam4y5oB01gAWgIR0CV4lupjtojdX2UKGgGR0BZoH0K7ZnMaAdN6ANoCEdAleNrzf779HV9lChoBkdAcSK2tuDSPWgHTSMBaAhHQJXlOqFRHgB1fZQoaAZHQHK+grlNlAhoB01tAWgIR0CV5YOiWVu8dX2UKGgGR0BxhbNs3yZsaAdL/WgIR0CV5mM6zVtodX2UKGgGR0BxkXfaYeDGaAdNcAFoCEdAlebiVKPGQ3V9lChoBkdAch/0gbIcR2gHTYABaAhHQJXoGP91loV1fZQoaAZHQHFohJRO1v5oB0v+aAhHQJXp4pBomHB1fZQoaAZHQHEG1A7gbZRoB03iAWgIR0CV6fBuXNTtdX2UKGgGR0Bxtz6WPcSHaAdNOAFoCEdAlepLFbVz63V9lChoBkdAcA4x9oexOmgHS/doCEdAleqqGL1mJ3V9lChoBkdAcgmy9VWCE2gHTQIBaAhHQJXq5/lQuVZ1fZQoaAZHQG9grZSNwR5oB00jAmgIR0CV6/HktEofdX2UKGgGR0BxdtKvmozfaAdNMgFoCEdAlexJvo/zKHV9lChoBkdAcIgwo9cKPWgHTRMBaAhHQJXs6KqGUOd1fZQoaAZHQG4u+az/p+toB00HAWgIR0CV7QVS4vvjdX2UKGgGR0BzkSJhvze5aAdL52gIR0CWB4Eh7mdRdX2UKGgGR0BxpJPfsNUgaAdNLwFoCEdAlgiURaouPHV9lChoBkdAcMyLw4KhMGgHTRIBaAhHQJYJuEOAiFF1fZQoaAZHQHG/NHc1wYNoB0v6aAhHQJYJxBhQWN51fZQoaAZHQHHbAiFCb+doB0v3aAhHQJYKMXSBshx1fZQoaAZHQFB87V8Ti85oB0u+aAhHQJYKkSQHRkV1fZQoaAZHQG72u5jH4oJoB0vcaAhHQJYM29DhLoR1fZQoaAZHQHHsIXfqHGloB0vuaAhHQJYNByU9pyp1fZQoaAZHQHDhpGnXNC9oB0v5aAhHQJYNGrPt2LZ1fZQoaAZHQG627ItDlYFoB00FAWgIR0CWDnK15Sm7dX2UKGgGR0BxMkG8mKIjaAdL82gIR0CWD1RL9MsZdX2UKGgGR0BxyIhA4XGfaAdNUgFoCEdAlg9jFqBVdXV9lChoBkdActNUJOWSlmgHTREBaAhHQJYRFY1YQrd1fZQoaAZHQHGP0KJEYwZoB00fAWgIR0CWEZ9wWFewdX2UKGgGR0BJ7dS2phnbaAdLumgIR0CWEdRpUPxydX2UKGgGR0BxdR+3H7xeaAdL/GgIR0CWEe3DNyHVdX2UKGgGR0BxtLpwCKaYaAdNVQFoCEdAlhJrQLNOd3V9lChoBkdAcEiVLSNOumgHTQgBaAhHQJYTyoQ4CIV1fZQoaAZHQHA7gKa5PM1oB00PAWgIR0CWFAn3+MqCdX2UKGgGR0BxPbtzCDVZaAdNQAFoCEdAlhS6pDNQj3V9lChoBkdAcb/HJtBOYmgHTRgBaAhHQJYU7XNC7bt1fZQoaAZHQHB9Gecx0uFoB0viaAhHQJYVADRtxdZ1fZQoaAZHQHH5TUI9kjJoB00rAWgIR0CWFwMGorFwdX2UKGgGR0Bxea/+KjzqaAdNBgFoCEdAlheVY2bXpXV9lChoBkdAcKnqbSZ0CGgHTToBaAhHQJYXpWq94/x1fZQoaAZHQHFd4RujynVoB00hAWgIR0CWF87p3X7MdX2UKGgGR0Bxo9p8F6iTaAdNEwFoCEdAlhgAuAZsK3V9lChoBkdAYn0Vu76HkGgHTegDaAhHQJYYjkYGdI51fZQoaAZHQG28BlMAWBVoB00WAWgIR0CWGVqebutwdX2UKGgGR0BwEleeFtbcaAdNCwFoCEdAlhnXymQ8wHV9lChoBkdAcCqms/6frmgHTQcBaAhHQJYaQLjPv8Z1fZQoaAZHQHB6gckt29toB00DAWgIR0CWG3eb/ffodX2UKGgGR0Byf64mTkhiaAdNSAFoCEdAlhuORoysS3V9lChoBkdAcgxXrdFfA2gHS+BoCEdAlhuL6DXe33V9lChoBkdAcTpeaKDTSmgHS+5oCEdAlhu9oWYWtXV9lChoBkdASOCExqO94GgHS59oCEdAlhw2Mju8b3V9lChoBkdAcXuLnLaEjGgHTQ8BaAhHQJYc7s7dSEV1fZQoaAZHQHJJLL+xW1doB001AWgIR0CWHRu4PPLQdX2UKGgGR0BxEBhy8zyjaAdL52gIR0CWHnouf29MdX2UKGgGR0BxFF/+bVjJaAdNAAFoCEdAlh8aOktVaXV9lChoBkdAcaq7YkE9uGgHS/doCEdAlh8xZyMkyHV9lChoBkdAcrsYyfthNWgHTUABaAhHQJYgfDR+jM51fZQoaAZHQHFzgTAWSEFoB00UAWgIR0CWIafdhy80dX2UKGgGR0Byofuv2Xb/aAdNDAFoCEdAliHqJIlMRHV9lChoBkdAbzS1qnFYMmgHS/9oCEdAliH0WIoE0XV9lChoBkdAc3OK+i8Fp2gHTUgBaAhHQJYiagQHzH11fZQoaAZHQHH3O+ZgG8poB0vraAhHQJYikfkmx+t1fZQoaAZHQG78/XXiBGxoB00BAWgIR0CWI0cafjCIdX2UKGgGR0BxZlky1uzhaAdL/WgIR0CWI165Xlr/dX2UKGgGR0BtLoK2KEWZaAdL/GgIR0CWI9OsDGLldX2UKGgGR0BwLVnJ1aGIaAdNLAFoCEdAliR2Yv38GnV9lChoBkdAcX1vXK8tgGgHTRwBaAhHQJYlj+3pfQd1fZQoaAZHQHK6IHgP3BZoB00qAWgIR0CWJc95hSccdX2UKGgGR0ByzOoIfKZEaAdNAgFoCEdAliYv7aZhKHV9lChoBkdAcVhLThHby2gHS/VoCEdAliZd0FKTS3V9lChoBkdATf4a99MK1GgHS6xoCEdAlidULYwqRXV9lChoBkdAcJF/nGKhtmgHS9xoCEdAlife0kWyknV9lChoBkdAcfcRwIdELGgHS+loCEdAliiM81XNknV9lChoBkdAbI8Ft8/lhmgHTRYBaAhHQJYol/7SApd1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282b23eeabd16aadf928e15c8f057f9902aa576ec75033ebe648599f76a48473
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd9d94ad6241c72f2d6d6c420ce2592cd7c481f8a30ef4ebf6504164cbeb6704
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (157 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.27286254647515, "std_reward": 26.237864056980424, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-23T00:59:07.738690"}