Output_LayoutLMv3_v6

This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1308
  • Precision: 0.7788
  • Recall: 0.8
  • F1: 0.7892
  • Accuracy: 0.9637

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-07
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.61 100 0.5057 0.0 0.0 0.0 0.8962
No log 3.23 200 0.3746 0.0 0.0 0.0 0.8962
No log 4.84 300 0.2979 0.2143 0.0273 0.0484 0.9014
No log 6.45 400 0.2474 0.4444 0.1455 0.2192 0.9135
0.4794 8.06 500 0.2189 0.5 0.3 0.3750 0.9291
0.4794 9.68 600 0.2031 0.5301 0.4 0.4560 0.9325
0.4794 11.29 700 0.1916 0.6 0.4636 0.5231 0.9377
0.4794 12.9 800 0.1788 0.6364 0.5727 0.6029 0.9412
0.4794 14.52 900 0.1728 0.6796 0.6364 0.6573 0.9464
0.184 16.13 1000 0.1644 0.7010 0.6182 0.6570 0.9481
0.184 17.74 1100 0.1593 0.75 0.7091 0.7290 0.9567
0.184 19.35 1200 0.1520 0.7714 0.7364 0.7535 0.9602
0.184 20.97 1300 0.1420 0.7778 0.7636 0.7706 0.9619
0.184 22.58 1400 0.1427 0.7925 0.7636 0.7778 0.9637
0.1278 24.19 1500 0.1361 0.7727 0.7727 0.7727 0.9619
0.1278 25.81 1600 0.1342 0.8019 0.7727 0.7870 0.9654
0.1278 27.42 1700 0.1310 0.8056 0.7909 0.7982 0.9671
0.1278 29.03 1800 0.1290 0.7857 0.8 0.7928 0.9654
0.1278 30.65 1900 0.1268 0.7946 0.8091 0.8018 0.9671
0.0999 32.26 2000 0.1229 0.7768 0.7909 0.7838 0.9637
0.0999 33.87 2100 0.1305 0.8056 0.7909 0.7982 0.9654
0.0999 35.48 2200 0.1349 0.8241 0.8091 0.8165 0.9689
0.0999 37.1 2300 0.1327 0.8018 0.8091 0.8054 0.9654
0.0999 38.71 2400 0.1289 0.8018 0.8091 0.8054 0.9654
0.0833 40.32 2500 0.1274 0.8018 0.8091 0.8054 0.9654
0.0833 41.94 2600 0.1279 0.8018 0.8091 0.8054 0.9654
0.0833 43.55 2700 0.1295 0.8018 0.8091 0.8054 0.9654
0.0833 45.16 2800 0.1306 0.7788 0.8 0.7892 0.9637
0.0833 46.77 2900 0.1312 0.7788 0.8 0.7892 0.9637
0.0749 48.39 3000 0.1308 0.7788 0.8 0.7892 0.9637

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.