NotShrirang commited on
Commit
3cce975
·
1 Parent(s): d3db3d5

Upload TFAlbertForSequenceClassification

Browse files
Files changed (3) hide show
  1. README.md +48 -5
  2. config.json +37 -9
  3. tf_model.h5 +3 -0
README.md CHANGED
@@ -1,6 +1,49 @@
1
  ---
2
- license: mit
3
- language:
4
- - en
5
- pipeline_tag: text-classification
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: albert-base-v2
4
+ tags:
5
+ - generated_from_keras_callback
6
+ model-index:
7
+ - name: albert-spam-filter
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
+ probably proofread and complete it, then remove this comment. -->
13
+
14
+ # albert-spam-filter
15
+
16
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1290, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
38
+ - training_precision: float32
39
+
40
+ ### Training results
41
+
42
+
43
+
44
+ ### Framework versions
45
+
46
+ - Transformers 4.34.0
47
+ - TensorFlow 2.13.0
48
+ - Datasets 2.14.5
49
+ - Tokenizers 0.14.1
config.json CHANGED
@@ -1,12 +1,40 @@
1
  {
2
- "_name_or_path": "albert-spam-filter",
3
  "architectures": [
4
- "AlbertForUnmaskedLM"
5
  ],
6
- "id2label": {0: "Not Spam", 1: "Spam"},
7
- "label2id": {"Not Spam": 0, "Spam": 1},
8
- "problem_type": "binary_classification",
9
- "torch_dtype": "float32",
10
- "transformers_version": "4.21.3",
11
- "use_cache": true,
12
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  {
2
+ "_name_or_path": "albert-base-v2",
3
  "architectures": [
4
+ "AlbertForSequenceClassification"
5
  ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "Not Spam",
18
+ "1": "Spam"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "inner_group_num": 1,
22
+ "intermediate_size": 3072,
23
+ "label2id": {
24
+ "Not Spam": 0,
25
+ "Spam": 1
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "max_position_embeddings": 512,
29
+ "model_type": "albert",
30
+ "net_structure_type": 0,
31
+ "num_attention_heads": 12,
32
+ "num_hidden_groups": 1,
33
+ "num_hidden_layers": 12,
34
+ "num_memory_blocks": 0,
35
+ "pad_token_id": 0,
36
+ "position_embedding_type": "absolute",
37
+ "transformers_version": "4.34.0",
38
+ "type_vocab_size": 2,
39
+ "vocab_size": 30000
40
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f623ecbe03d69817ea8b2d860c2b3441073370a90f82b43e2a4624245e054aa5
3
+ size 46781688