Doron Adler
commited on
Commit
·
50ea8b0
1
Parent(s):
87ef27c
Model Card
Browse files
README.md
CHANGED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: he
|
3 |
+
|
4 |
+
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg
|
5 |
+
widget:
|
6 |
+
- text: "עוד בימי קדם"
|
7 |
+
- text: "קוראים לי דורון ואני מעוניין ל"
|
8 |
+
- text: "קוראים לי איציק ואני חושב ש"
|
9 |
+
- text: "החתול שלך מאוד חמוד ו"
|
10 |
+
- text: "ובדרך ראינו שהגן"
|
11 |
+
|
12 |
+
license: mit
|
13 |
+
---
|
14 |
+
|
15 |
+
# hebrew-gpt_neo-xl
|
16 |
+
|
17 |
+
Hebrew text generation model based on [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). Each was trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program.
|
18 |
+
|
19 |
+
## Datasets
|
20 |
+
|
21 |
+
1. An assortment of various Hebrew corpuses - I have made it available [here](https://mega.nz/folder/CodSSA4R#4INvMes-56m_WUi7jQMbJQ)
|
22 |
+
|
23 |
+
|
24 |
+
2. oscar / unshuffled_deduplicated_he - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he)
|
25 |
+
|
26 |
+
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.
|
27 |
+
|
28 |
+
## Training Config
|
29 |
+
|
30 |
+
Available [here](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-xl/configs) <BR>
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
### Google Colab Notebook
|
35 |
+
|
36 |
+
Available [here ](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-xl/Norod78_hebrew_gpt_neo_xl_Colab.ipynb) <BR>
|
37 |
+
|
38 |
+
|
39 |
+
#### Simple usage sample code
|
40 |
+
|
41 |
+
```python
|
42 |
+
|
43 |
+
!pip install tokenizers==0.10.2 transformers==4.5.1
|
44 |
+
|
45 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-xl")
|
48 |
+
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-xl", pad_token_id=tokenizer.eos_token_id)
|
49 |
+
|
50 |
+
prompt_text = "אני אוהב שוקולד ועוגות"
|
51 |
+
max_len = 512
|
52 |
+
sample_output_num = 3
|
53 |
+
seed = 1000
|
54 |
+
|
55 |
+
import numpy as np
|
56 |
+
import torch
|
57 |
+
|
58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
|
60 |
+
|
61 |
+
print(f"device: {device}, n_gpu: {n_gpu}")
|
62 |
+
|
63 |
+
np.random.seed(seed)
|
64 |
+
torch.manual_seed(seed)
|
65 |
+
if n_gpu > 0:
|
66 |
+
torch.cuda.manual_seed_all(seed)
|
67 |
+
|
68 |
+
model.to(device)
|
69 |
+
|
70 |
+
encoded_prompt = tokenizer.encode(
|
71 |
+
prompt_text, add_special_tokens=False, return_tensors="pt")
|
72 |
+
|
73 |
+
encoded_prompt = encoded_prompt.to(device)
|
74 |
+
|
75 |
+
if encoded_prompt.size()[-1] == 0:
|
76 |
+
input_ids = None
|
77 |
+
else:
|
78 |
+
input_ids = encoded_prompt
|
79 |
+
|
80 |
+
print("input_ids = " + str(input_ids))
|
81 |
+
|
82 |
+
if input_ids != None:
|
83 |
+
max_len += len(encoded_prompt[0])
|
84 |
+
if max_len > 2048:
|
85 |
+
max_len = 2048
|
86 |
+
|
87 |
+
print("Updated max_len = " + str(max_len))
|
88 |
+
|
89 |
+
sample_outputs = model.generate(
|
90 |
+
input_ids,
|
91 |
+
do_sample=True,
|
92 |
+
max_length=max_len,
|
93 |
+
top_k=50,
|
94 |
+
top_p=0.95,
|
95 |
+
num_return_sequences=sample_output_num
|
96 |
+
)
|
97 |
+
|
98 |
+
print(100 * '-' + "\nOutput:\n" + 100 * '-')
|
99 |
+
for i, sample_output in enumerate(sample_outputs):
|
100 |
+
print("\n{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
101 |
+
print("\n" + 100 * '-')
|
102 |
+
|
103 |
+
```
|