ppo-LunarLander-v2 / config.json
nithiroj's picture
Upload PPO LunarLander-v2 trained agent
b0fb49a
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0932d50d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0932d50dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0932d50e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0932d50ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f0932d50f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f0932cd8050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0932cd80e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0932cd8170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0932cd8200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0932cd8290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0932cd8320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0932d2d210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661995031.3334959, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANotyr5I8HM/2J0xPWZMTb6ucO+99YyzvAAAAAAAAAAAAF4PvOH4uLr+Buo6tWfWNVPA0jYmaQW6AACAPwAAgD9mB1i+pBxtuwg8Trw98Uc8Aa6lPObdLb0AAIA/AACAP80UCL4pyEW6BXhtuZaChrTA9Ji6Fu6JOAAAgD8AAIA/ZhZBvdPmrz9EFMm+T8p5vpQz3bxm6Ua+AAAAAAAAAAAA79q8UoKAOuu+M7126JM8pDfeOhBy+7wAAAAAAAAAAAOcZb6V/2Q/EkGlvQYdl751Nge9FNK7vAAAAAAAAAAAjXU+vh/skzzgD3u61O6dOMqHGL6l9vm3AACAPwAAgD/m2qe9SIGTukY1EbpV+Qay7e7qupSBJTkAAIA/AACAP2YkA7wU5I+64uWLO8a4gziDEtY68ut1uQAAgD8AAIA/oMcLvrg2iLkOVG+5jXrAM6mQOrvBD4k4AACAPwAAgD+aca096eQLP9473b0wCmK+Dd4EvhNezLwAAAAAAAAAADNmxjxcqxu65iPAO9rCBzg6KYA6OaiZugAAgD8AAIA/MyxwvSOFsj+VMg6+XwGWvmD2GL0tI5I9AAAAAAAAAAA9qoC+yLmhvDVjiLqTYsO4C5sLPgbIozkAAIA/AACAPzPpWD0UhoS6NRWlu92jkDV79yg7yJ8CtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi/7QzJNlVUCUhpRSlIwBbJRN6AOMAXSUR0CamOet0V8DdX2UKGgGaAloD0MIrRiuDoDWWkCUhpRSlGgVTegDaBZHQJqZaoHcDbJ1fZQoaAZoCWgPQwg7AU2EjRRgQJSGlFKUaBVN6ANoFkdAmp8eyAxzrHV9lChoBmgJaA9DCNb/OcyXiFRAlIaUUpRoFU3oA2gWR0Cao2zHjp9rdX2UKGgGaAloD0MIE9VbA1vrY0CUhpRSlGgVTegDaBZHQJqmbL+xW1d1fZQoaAZoCWgPQwh+GCE82h1bQJSGlFKUaBVN6ANoFkdAmr0FN5+pfnV9lChoBmgJaA9DCNL9nIL8q15AlIaUUpRoFU3oA2gWR0CavVdZaFEidX2UKGgGaAloD0MI64zvi0uqU0CUhpRSlGgVTegDaBZHQJrGCJ/G2kV1fZQoaAZoCWgPQwjhlo+kpK5VQJSGlFKUaBVN6ANoFkdAmsan4CZF5XV9lChoBmgJaA9DCG2oGOdvQmRAlIaUUpRoFU3oA2gWR0Cax2MxXXAedX2UKGgGaAloD0MIxVbQtMSvXECUhpRSlGgVTegDaBZHQJrJC8M/hVF1fZQoaAZoCWgPQwjakH9mEDlZQJSGlFKUaBVN6ANoFkdAmtBkKZ2IPHV9lChoBmgJaA9DCCbl7nN8zVJAlIaUUpRoFU3oA2gWR0Ca1U+2VmjCdX2UKGgGaAloD0MIjuVd9YByXkCUhpRSlGgVTegDaBZHQJrayD6Fds11fZQoaAZoCWgPQwhdNjrnJwVjQJSGlFKUaBVN6ANoFkdAmt24nWrfcnV9lChoBmgJaA9DCCBGCI82kkdAlIaUUpRoFU3oA2gWR0Ca32q8DjiodX2UKGgGaAloD0MIXoJTH0hKOMCUhpRSlGgVTRUBaBZHQJrhpxKg7HR1fZQoaAZoCWgPQwh3uvPEcy9WQJSGlFKUaBVN6ANoFkdAmuwPG+9Jz3V9lChoBmgJaA9DCFtdTgmIlmNAlIaUUpRoFU3oA2gWR0Ca7IS3LFGYdX2UKGgGaAloD0MIEJVGzOz/TECUhpRSlGgVTegDaBZHQJrx2dI5HVh1fZQoaAZoCWgPQwj/5sWJr1RZQJSGlFKUaBVN6ANoFkdAmvYIzrNW2nV9lChoBmgJaA9DCAK8BRIUc15AlIaUUpRoFU3oA2gWR0Ca+RNGEwnIdX2UKGgGaAloD0MI5SuBlFjzYECUhpRSlGgVTegDaBZHQJr8ZTkyULV1fZQoaAZoCWgPQwgMIHwo0ZdUQJSGlFKUaBVN6ANoFkdAmw/vDDTBqXV9lChoBmgJaA9DCB09fm/TXmFAlIaUUpRoFU3oA2gWR0CbGU9CNS62dX2UKGgGaAloD0MIjSeCOA/TWUCUhpRSlGgVTegDaBZHQJsZ603Ov+x1fZQoaAZoCWgPQwg2PSgoRddnQJSGlFKUaBVN6ANoFkdAmxqdKVY6n3V9lChoBmgJaA9DCDlhwmhWZWBAlIaUUpRoFU3oA2gWR0CbHCOnEVFhdX2UKGgGaAloD0MIXI5XIHoqMUCUhpRSlGgVTSYBaBZHQJsciBI4EOl1fZQoaAZoCWgPQwifPgJ/+DkZwJSGlFKUaBVL9WgWR0CbJ6LEUCaJdX2UKGgGaAloD0MIlkIglzj/ZUCUhpRSlGgVTegDaBZHQJsoTfk3juN1fZQoaAZoCWgPQwg9DK1OzrxXQJSGlFKUaBVN6ANoFkdAmy2gf+0gKXV9lChoBmgJaA9DCKLPRxlxKVtAlIaUUpRoFU3oA2gWR0CbMJLGrCFcdX2UKGgGaAloD0MIRMNi1DVOYUCUhpRSlGgVTegDaBZHQJsyOKxcE/11fZQoaAZoCWgPQwgBTu/ifa5kQJSGlFKUaBVN6ANoFkdAmzR898qnWXV9lChoBmgJaA9DCAxAo3TpeUxAlIaUUpRoFUvkaBZHQJs7YT7EYO51fZQoaAZoCWgPQwi46jpUU9ZXQJSGlFKUaBVN6ANoFkdAmz3Sn1nM+3V9lChoBmgJaA9DCMKFPIIbjFdAlIaUUpRoFU3oA2gWR0CbPjfhMrVfdX2UKGgGaAloD0MIzLVoAVoIZECUhpRSlGgVTegDaBZHQJtCmqyWzGB1fZQoaAZoCWgPQwi+h0uOu2VgQJSGlFKUaBVN6ANoFkdAm0iB+WnjyXV9lChoBmgJaA9DCI7myMqvTmFAlIaUUpRoFU3oA2gWR0CbS3HZsbeedX2UKGgGaAloD0MIzNO5opS/W0CUhpRSlGgVTegDaBZHQJtLvj6vaDh1fZQoaAZoCWgPQwg6kPXU6mM0QJSGlFKUaBVNDgFoFkdAm2WIg3cYZXV9lChoBmgJaA9DCM1aCkj75VpAlIaUUpRoFU3oA2gWR0CbZ/L6UJOWdX2UKGgGaAloD0MIu9Vz0vs0X0CUhpRSlGgVTegDaBZHQJtoo9IPK+11fZQoaAZoCWgPQwhHBU62gTM/QJSGlFKUaBVL4mgWR0CbaTlCkXUIdX2UKGgGaAloD0MIbRrba8GeZECUhpRSlGgVTegDaBZHQJtqH6wdKdx1fZQoaAZoCWgPQwhHPq946hBeQJSGlFKUaBVN6ANoFkdAm2qApBomHHV9lChoBmgJaA9DCMXleAWiH1tAlIaUUpRoFU3oA2gWR0CbdR94/u9fdX2UKGgGaAloD0MI0R4vpMM0Y0CUhpRSlGgVTegDaBZHQJt1xsJpnHx1fZQoaAZoCWgPQwgiMxe4PLYrQJSGlFKUaBVL/mgWR0CbeR9du5z6dX2UKGgGaAloD0MIVtKKbyhAXECUhpRSlGgVTegDaBZHQJt+Ti704BF1fZQoaAZoCWgPQwj7d33mrA1hQJSGlFKUaBVN6ANoFkdAm4AR1klNUXV9lChoBmgJaA9DCKxUUFH1IV5AlIaUUpRoFU3oA2gWR0Cbgm5ggHNYdX2UKGgGaAloD0MIhXe5iO9INkCUhpRSlGgVS/doFkdAm4kERjBl+XV9lChoBmgJaA9DCPxvJTu262JAlIaUUpRoFU3oA2gWR0CbifTlT3qSdX2UKGgGaAloD0MIXFmis8wrXUCUhpRSlGgVTegDaBZHQJuM0jKPn0V1fZQoaAZoCWgPQwgUmE7rthpgQJSGlFKUaBVN6ANoFkdAm41FrAP/aXV9lChoBmgJaA9DCOC7zRunPmNAlIaUUpRoFU2GA2gWR0CblmttALRbdX2UKGgGaAloD0MIHEMAcGxxY0CUhpRSlGgVTegDaBZHQJudBKYiPhh1fZQoaAZoCWgPQwgVArnEkWxgQJSGlFKUaBVN6ANoFkdAm7k5ZW7vonV9lChoBmgJaA9DCBoZ5C7C82NAlIaUUpRoFU3oA2gWR0CbvBmdAgPmdX2UKGgGaAloD0MIuJVem412XUCUhpRSlGgVTegDaBZHQJu881TBInV1fZQoaAZoCWgPQwjrHAOy141jQJSGlFKUaBVN6ANoFkdAm72Zx//ecnV9lChoBmgJaA9DCL2nctpThmRAlIaUUpRoFU3oA2gWR0Cbvqc5Ke05dX2UKGgGaAloD0MIbXAi+jUsYUCUhpRSlGgVTegDaBZHQJvLzsLORkp1fZQoaAZoCWgPQwj7kSIyLK1hQJSGlFKUaBVN6ANoFkdAm8zA0TDfnHV9lChoBmgJaA9DCBWpMLYQ5ktAlIaUUpRoFU0qAWgWR0CbzeEGqxTsdX2UKGgGaAloD0MIx6F+F7a2MkCUhpRSlGgVTQkBaBZHQJvOZON5t3x1fZQoaAZoCWgPQwg8iJ0p9GRjQJSGlFKUaBVN6ANoFkdAm9fFFpfx+nV9lChoBmgJaA9DCD7nbtfL+mBAlIaUUpRoFU3oA2gWR0Cb2Wo7FKkEdX2UKGgGaAloD0MIH9eGinF9X0CUhpRSlGgVTegDaBZHQJvbnwob4rV1fZQoaAZoCWgPQwiGcw0zNINdQJSGlFKUaBVN6ANoFkdAm+ICDM/yG3V9lChoBmgJaA9DCKhXyjLEYmFAlIaUUpRoFU3oA2gWR0Cb4tagmJFcdX2UKGgGaAloD0MIptQl4xjKX0CUhpRSlGgVTegDaBZHQJvlQegctGx1fZQoaAZoCWgPQwiZhAt5hNJhQJSGlFKUaBVN6ANoFkdAm+WkpuuRtHV9lChoBmgJaA9DCEaaeAd4siNAlIaUUpRoFU0HAWgWR0Cb6K5sj3VTdX2UKGgGaAloD0MIBr6iWy8qYUCUhpRSlGgVTegDaBZHQJvtO96C17Z1fZQoaAZoCWgPQwhMNh5ssaNQQJSGlFKUaBVN6ANoFkdAm/JiS3b213V9lChoBmgJaA9DCDQUd7zJrUnAlIaUUpRoFU0LAWgWR0CcCxCmMwUQdX2UKGgGaAloD0MIFqdaC7PlYECUhpRSlGgVTegDaBZHQJwP3mT1TR91fZQoaAZoCWgPQwgGu2HbInBgQJSGlFKUaBVN6ANoFkdAnBCCVObiInV9lChoBmgJaA9DCNyb3zDRq15AlIaUUpRoFU3oA2gWR0CcEY3ztkWidX2UKGgGaAloD0MIyy4YXHMXXkCUhpRSlGgVTegDaBZHQJwdrnJT2nN1fZQoaAZoCWgPQwhtq1lnfJVfQJSGlFKUaBVN6ANoFkdAnB5TeGfwqnV9lChoBmgJaA9DCAR0X85syV9AlIaUUpRoFU3oA2gWR0CcHxtdiUgTdX2UKGgGaAloD0MIHRzsTQyRX0CUhpRSlGgVTegDaBZHQJwfcMy8BdV1fZQoaAZoCWgPQwgXnpeKjc9DQJSGlFKUaBVNMwFoFkdAnCLVcUuct3V9lChoBmgJaA9DCDY656c4BWBAlIaUUpRoFU3oA2gWR0CcJXkIomXxdX2UKGgGaAloD0MI3IMQkC/CVECUhpRSlGgVTegDaBZHQJwoxG2Culp1fZQoaAZoCWgPQwiyRj1EoysrQJSGlFKUaBVL+mgWR0CcLIwOOKfndX2UKGgGaAloD0MIWYrkK4ESX0CUhpRSlGgVTegDaBZHQJwuQuBczIp1fZQoaAZoCWgPQwh+ObNdoQpZQJSGlFKUaBVN6ANoFkdAnC8D7ZWaMXV9lChoBmgJaA9DCGkc6ndhrl1AlIaUUpRoFU3oA2gWR0CcMS4d6sySdX2UKGgGaAloD0MIr+qsFth9ZECUhpRSlGgVTegDaBZHQJwxic+aBqd1fZQoaAZoCWgPQwg3ww34fB5jQJSGlFKUaBVN6ANoFkdAnDkrPppvgnV9lChoBmgJaA9DCHQjLCriQWBAlIaUUpRoFU3oA2gWR0CcPodBjWkKdX2UKGgGaAloD0MIyR8MPPe+A8CUhpRSlGgVTR8BaBZHQJw+pyq+8Gt1fZQoaAZoCWgPQwg6sBwhA/NkQJSGlFKUaBVNfgNoFkdAnEIJ3gUDdXV9lChoBmgJaA9DCA9kPbX6r2RAlIaUUpRoFU3oA2gWR0CcQ73Ov+wUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}