File size: 1,227 Bytes
f26b08c b7fe0c5 1eb4be5 f26b08c b7fe0c5 608a843 f26b08c b7fe0c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
tags:
- background-removal
- computer-vision
- image-segmentation
license: apache-2.0
library: pytorch
inference: false
---
# IS-Net_DIS-general-use
* Model Authors: Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan*, Ling Shao, Luc Van Gool
* Paper: Highly Accurate Dichotomous Image Segmentation (ECCV 2022 - https://arxiv.org/pdf/2203.03041.pdf
* Code Repo: https://github.com/xuebinqin/DIS
* Project Homepage: https://xuebinqin.github.io/dis/index.html
Note that this is an _optimized_ version of the IS-NET model.
From the paper abstract:
> [...] we introduce a simple intermediate supervision baseline (IS- Net) using both feature-level and mask-level guidance for DIS model training. Without tricks, IS-Net outperforms var- ious cutting-edge baselines on the proposed DIS5K, mak- ing it a general self-learned supervision network that can help facilitate future research in DIS.
![](https://raw.githubusercontent.com/xuebinqin/DIS/main/figures/is-net.png)
# Citation
```
@InProceedings{qin2022,
author={Xuebin Qin and Hang Dai and Xiaobin Hu and Deng-Ping Fan and Ling Shao and Luc Van Gool},
title={Highly Accurate Dichotomous Image Segmentation},
booktitle={ECCV},
year={2022}
}
```
|