NikosKokkini commited on
Commit
d3616bd
·
1 Parent(s): 734ef23

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.28 +/- 0.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:990954cfa5216c73d7ee476b9413087f9d23e8dbd3e16098c9922a9004539f95
3
+ size 122632
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3ae3edb430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f3ae3ed3ae0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 32,
46
+ "num_timesteps": 4000000,
47
+ "_total_timesteps": 4000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678176330532125362,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoloABAAAAAAAAL/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksgSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoloABAAAAAAAADM6RPzJRy77bTNu/7GpiPiZQqL+Xg4e+etCOP7Le0b9Hx0o/I5eOP/S0qL4HoQU/jZ7FPz1igT05Gim/pNjGv66rtD8bq4C+Mfiyvwtn3L9gBdU/XHdQvybp1z83NMS/a6hfP9LVQL8W1Km/bpnvPktkA722e/o+tpNoP/T/oj2WMmU+49x0PxbFl7+OmjY+HqrAv5HUCT82Urk+QqEXvsnEN793xUu/o86bP2OWFT8fnhk/+pFDPiWbzj4PRdS/cruEPwzjbz/hpW2/dJakP8S3lL8oehm/HsHFP10UA7+tA2W/rYMHvzypob8s/Hk/vaNTP4JhlL+HsKW/FWgePk7nXL1osK0/F8dfPp8tKD9KT26+XI8Zv7H6wj9D17I+krsBvxM8lL9oD9c+NSZVP0Gsrj8Wv22/uFSiP5HxwD/TeIW/lvjVvqYaaz+gT28+NI+Jv74pwj+oF9Y/fvXYvTPZsj/nn0g/GBVYP7iwEL+BHWg/LHT8vuYkrz9s4G2+lGgOSyBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAMAAAAAAAAv99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz2UaA5LIEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]]",
62
+ "desired_goal": "[[ 1.1391006 -0.39710385 -1.713283 ]\n [ 0.221111 -1.3149459 -0.26467583]\n [ 1.1157372 -1.6396086 0.79210323]\n [ 1.1139873 -0.32950556 0.52198833]\n [ 1.5439011 0.06317566 -0.6605564 ]\n [-1.5534863 1.4114892 -0.25130543]\n [-1.3981992 -1.7218946 1.6642265 ]\n [-0.8143213 1.6868026 -1.5328435 ]\n [ 0.8736636 -0.75326264 -1.3267848 ]\n [ 0.46796745 -0.03207807 0.4892251 ]\n [ 0.9085039 0.07958975 0.22382578]\n [ 0.95649546 -1.1857021 0.17832395]\n [-1.5051916 0.53839976 0.36195534]\n [-0.14807609 -0.71784645 -0.7959818 ]\n [ 1.2172436 0.58432597 0.600069 ]\n [ 0.19098654 0.4035274 -1.6583575 ]\n [ 1.0369704 0.9370582 -0.92831236]\n [ 1.2858415 -1.1618581 -0.5995202 ]\n [ 1.544956 -0.51202947 -0.89458734]\n [-0.52935296 -1.2629771 0.9765041 ]\n [ 0.8267172 -1.1592257 -1.2944497 ]\n [ 0.15469392 -0.05393153 1.356946 ]\n [ 0.2185329 0.6569461 -0.23272434]\n [-0.59984374 1.5232755 0.34929857]\n [-0.50676835 -1.1580833 0.42003942]\n [ 0.83261424 1.3646318 -0.928697 ]\n [ 1.2682104 1.507372 -1.0427498 ]\n [-0.4179122 0.9183754 0.23370218]\n [-1.0746827 1.5168989 1.6725969 ]\n [-0.10593699 1.3972534 0.7836899 ]\n [ 0.84407187 -0.5651965 0.9067002 ]\n [-0.49307382 1.3683136 -0.23230141]]",
63
+ "observation": "[[ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoloABAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksgSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoloABAAAAAAAA0lzwPTcjzT3HYRk+9XHOPAuDC71H1JA+torzPQ/VCr7lekY8m2EHvqJoCL7hM6Q9Zkx3vVgyFr5axso9nBHCvKerqrzvyTY+qpRvPGmf8D3DCCM+jMQPvoJOBD6XGw8+jRrevZA2uz1siFY+WtYsPbnZ3T1S+II+tMECPjTM/r3sIoI+IX0Fvcyp3DwIW7k9qj0NvkDUwL1YXoY9T+YHPtS+8zyZ4og+AHMNvhHzoD1VjRo+BCnxPaFEALy9m44+k2H3PdiKDr5+5gk9V9bpvfRlkr0QeJ49BcOrPaKR+j1KJt49H291vZlH+b2Jfhs+IuktvWkvEb4h9vo9e3v8PXeOUbzzvZA+nRqwPfxmrD0VJR0+DpLkO+XKnTvLgjg+NPVEPCaO6T0w54A+ue/CPT+0D76sotk7SW8SvfX9sjwcbpU+L4mpPcmMIj1mtm0+ld0xvRP+yTmOO3Y9rNPpvXFQJ71oQgY8Hb8rPCPxyrwkARY+nYIKvoI5Gz1o/mo+lGgOSyBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LIEsGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[ 0.11736454 0.10016482 0.14978705]\n [ 0.02520082 -0.03406052 0.28286955]\n [ 0.11891691 -0.13557838 0.01211426]\n [-0.13220827 -0.13321164 0.08017708]\n [-0.06037559 -0.14667642 0.09901114]\n [-0.02369004 -0.0208338 0.17850469]\n [ 0.01462285 0.11749155 0.15921311]\n [-0.1403982 0.12920573 0.13975368]\n [-0.10844908 0.09141266 0.20950478]\n [ 0.04219661 0.10832543 0.25580078]\n [ 0.12769204 -0.12441292 0.25417268]\n [-0.03259004 0.02693643 0.09050566]\n [-0.13793054 -0.09415483 0.06560963]\n [ 0.1327145 0.02975408 0.2673538 ]\n [-0.138134 0.07858861 0.15092976]\n [ 0.11775401 -0.00782886 0.27853194]\n [ 0.12079158 -0.13920152 0.03366708]\n [-0.11417835 -0.07148352 0.07737744]\n [ 0.08386806 0.12234809 0.10847147]\n [-0.05992043 -0.12171859 0.15184988]\n [-0.04245866 -0.14178242 0.12253977]\n [ 0.1232824 -0.01279031 0.2826992 ]\n [ 0.08598826 0.0841808 0.15346177]\n [ 0.00697542 0.00481545 0.18018644]\n [ 0.01202135 0.11404066 0.25176382]\n [ 0.0951838 -0.14033602 0.00664171]\n [-0.03575066 0.02184961 0.2918557 ]\n [ 0.08278119 0.03968504 0.2321411 ]\n [-0.04342421 0.00038527 0.06011539]\n [-0.11417326 -0.0408482 0.00819454]\n [ 0.01048258 -0.02477319 0.14648873]\n [-0.13526388 0.03789664 0.22948611]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRE30+Sgj3b+UhpRSlIwBbJRLMowBdJRHQMUq5ro4dZJ1fZQoaAZoCWgPQwgRcXMqGQDGv5SGlFKUaBVLMmgWR0DFKtYeYD1XdX2UKGgGaAloD0MIPzbJj/gV3r+UhpRSlGgVSzJoFkdAxSrGAoXsPnV9lChoBmgJaA9DCPTBMjZ0s96/lIaUUpRoFUsyaBZHQMUqthScbzd1fZQoaAZoCWgPQwjpJ5zdWibHv5SGlFKUaBVLMmgWR0DFMHeYUnG9dX2UKGgGaAloD0MId01Iaww62b+UhpRSlGgVSzJoFkdAxTBixjawlnV9lChoBmgJaA9DCGx3D9B9Ode/lIaUUpRoFUsyaBZHQMUwOPN3W4F1fZQoaAZoCWgPQwjNPo9RnnnUv5SGlFKUaBVLMmgWR0DFL/msYEW7dX2UKGgGaAloD0MILXqnAu5507+UhpRSlGgVSzJoFkdAxS+9DXOGCnV9lChoBmgJaA9DCM1XycfuAtS/lIaUUpRoFUsyaBZHQMUvgZ7w8W91fZQoaAZoCWgPQwhPrFPle0bSv5SGlFKUaBVLMmgWR0DFL1D92ovSdX2UKGgGaAloD0MIldQJaCJs27+UhpRSlGgVSzJoFkdAxS8db7CSBHV9lChoBmgJaA9DCG5qoPmcu8e/lIaUUpRoFUsyaBZHQMUu6ZOBUaR1fZQoaAZoCWgPQwiOIJViR+PTv5SGlFKUaBVLMmgWR0DFLsFhVlwtdX2UKGgGaAloD0MIZmt9kdCW1r+UhpRSlGgVSzJoFkdAxS6kBYmsvXV9lChoBmgJaA9DCFx2iH/Y0te/lIaUUpRoFUsyaBZHQMUuiV27nPp1fZQoaAZoCWgPQwiX/brTnSfYv5SGlFKUaBVLMmgWR0DFLmcqDsdDdX2UKGgGaAloD0MI9IsS9Bd6yr+UhpRSlGgVSzJoFkdAxS5DwPy08nV9lChoBmgJaA9DCEDdQIF38ta/lIaUUpRoFUsyaBZHQMUuKKp1ifB1fZQoaAZoCWgPQwiXcymuKvvIv5SGlFKUaBVLMmgWR0DFLg2QGOdYdX2UKGgGaAloD0MIFop0P6cg0L+UhpRSlGgVSzJoFkdAxS30ncclxHV9lChoBmgJaA9DCN3QlJ1+0OC/lIaUUpRoFUsyaBZHQMUt2H/Lkjp1fZQoaAZoCWgPQwgpmDEFa5zWv5SGlFKUaBVLMmgWR0DFLb8Hv+fidX2UKGgGaAloD0MI1hu1wvS9xr+UhpRSlGgVSzJoFkdAxS2lOVPepHV9lChoBmgJaA9DCDpa1ZKOctq/lIaUUpRoFUsyaBZHQMUth5gG8mN1fZQoaAZoCWgPQwh6w33k1qTav5SGlFKUaBVLMmgWR0DFLWjJp35fdX2UKGgGaAloD0MIYLGGi9zT0L+UhpRSlGgVSzJoFkdAxS1QiC8OC3V9lChoBmgJaA9DCI0kQbgCCtS/lIaUUpRoFUsyaBZHQMUtM87ZFod1fZQoaAZoCWgPQwiKzFzg8ljVv5SGlFKUaBVLMmgWR0DFLRXio86ndX2UKGgGaAloD0MIL6NYbmk12b+UhpRSlGgVSzJoFkdAxSz+DQqqfnV9lChoBmgJaA9DCAOWXMXiN8u/lIaUUpRoFUsyaBZHQMUs4JIDoyN1fZQoaAZoCWgPQwjG+ZtQiIDbv5SGlFKUaBVLMmgWR0DFLM+DnNgSdX2UKGgGaAloD0MIFOrpI/CH07+UhpRSlGgVSzJoFkdAxSy6HDaXbHV9lChoBmgJaA9DCGGJB5RNudi/lIaUUpRoFUsyaBZHQMUsqYYJmd11fZQoaAZoCWgPQwhKmj+mtWnSv5SGlFKUaBVLMmgWR0DFLJl0DEFXdX2UKGgGaAloD0MIPnjt0obD0r+UhpRSlGgVSzJoFkdAxSyJjG1hLHV9lChoBmgJaA9DCBtivOZVndy/lIaUUpRoFUsyaBZHQMUy9d4NZvF1fZQoaAZoCWgPQwgDWyVYHM7gv5SGlFKUaBVLMmgWR0DFMuFJpWWAdX2UKGgGaAloD0MI+kMzT64pwr+UhpRSlGgVSzJoFkdAxTK31K5CnnV9lChoBmgJaA9DCIZyol2FFOG/lIaUUpRoFUsyaBZHQMUyeMyad+Z1fZQoaAZoCWgPQwg9mBQfn5DZv5SGlFKUaBVLMmgWR0DFMjx+c6NmdX2UKGgGaAloD0MIiL1QwHYwwL+UhpRSlGgVSzJoFkdAxTIBKOktVnV9lChoBmgJaA9DCD1IT5FDxNG/lIaUUpRoFUsyaBZHQMUx0MySFGp1fZQoaAZoCWgPQwjf4XZoWIzdv5SGlFKUaBVLMmgWR0DFMZ1et0V8dX2UKGgGaAloD0MIbeF5qdiYxb+UhpRSlGgVSzJoFkdAxTFps41gpnV9lChoBmgJaA9DCEPFOH8TCs+/lIaUUpRoFUsyaBZHQMUxQcf/3nJ1fZQoaAZoCWgPQwgbEYyDS8fgv5SGlFKUaBVLMmgWR0DFMSSdrftQdX2UKGgGaAloD0MIRYE+kSdJ0r+UhpRSlGgVSzJoFkdAxTEKHFglW3V9lChoBmgJaA9DCCxKCcGqetS/lIaUUpRoFUsyaBZHQMUw6B/RVp91fZQoaAZoCWgPQwikpfJ2hFPjv5SGlFKUaBVLMmgWR0DFMMU8vEjxdX2UKGgGaAloD0MIrdo1Ia0x2L+UhpRSlGgVSzJoFkdAxTCqSdOIqXV9lChoBmgJaA9DCCCaeXJNgeC/lIaUUpRoFUsyaBZHQMUwj2Xb/Ot1fZQoaAZoCWgPQwj7A+W2fY/Xv5SGlFKUaBVLMmgWR0DFMHarq+rVdX2UKGgGaAloD0MIRl9BmrFo1b+UhpRSlGgVSzJoFkdAxTBavicXnHV9lChoBmgJaA9DCDZ39L9ci9i/lIaUUpRoFUsyaBZHQMUwQXfZVXF1fZQoaAZoCWgPQwinXUwz3evMv5SGlFKUaBVLMmgWR0DFMCfczqKQdX2UKGgGaAloD0MII4PcRZii4L+UhpRSlGgVSzJoFkdAxTAKeT3Zf3V9lChoBmgJaA9DCOaxZmSQu+C/lIaUUpRoFUsyaBZHQMUv6+w9q1x1fZQoaAZoCWgPQwg2eF+VC5XDv5SGlFKUaBVLMmgWR0DFL9PmcOLBdX2UKGgGaAloD0MIRfXWwFYJ4L+UhpRSlGgVSzJoFkdAxS+3ShrWRXV9lChoBmgJaA9DCIFc4sgDkd+/lIaUUpRoFUsyaBZHQMUvmfEXLvF1fZQoaAZoCWgPQwj9T/7uHTXWv5SGlFKUaBVLMmgWR0DFL4JEpiI+dX2UKGgGaAloD0MIyCQjZ2FP2r+UhpRSlGgVSzJoFkdAxS9lC0ngHnV9lChoBmgJaA9DCFmmXyLeOtS/lIaUUpRoFUsyaBZHQMUvVEOiFkB1fZQoaAZoCWgPQwhPkUPEzanUv5SGlFKUaBVLMmgWR0DFLz8PUaybdX2UKGgGaAloD0MIGZEotKz71r+UhpRSlGgVSzJoFkdAxS8uuJUHZHV9lChoBmgJaA9DCAfqlEc3wtS/lIaUUpRoFUsyaBZHQMUvHxTsIE91fZQoaAZoCWgPQwj/QLlt36PVv5SGlFKUaBVLMmgWR0DFLw9KqXF+dX2UKGgGaAloD0MIlG3gDtQp4b+UhpRSlGgVSzJoFkdAxTVIC2+fy3V9lChoBmgJaA9DCLFppRDIJcy/lIaUUpRoFUsyaBZHQMU1M0PhAGB1fZQoaAZoCWgPQwg900uMZfrbv5SGlFKUaBVLMmgWR0DFNQlyzXz2dX2UKGgGaAloD0MIHvruVpbo2L+UhpRSlGgVSzJoFkdAxTTKMI/qxHV9lChoBmgJaA9DCGw9Qzhm2du/lIaUUpRoFUsyaBZHQMU0jYl6Z6V1fZQoaAZoCWgPQwjltn2P+uvXv5SGlFKUaBVLMmgWR0DFNFIGD+R6dX2UKGgGaAloD0MIjZYDPdS20r+UhpRSlGgVSzJoFkdAxTQhcpLEk3V9lChoBmgJaA9DCIs3Mo/8wdC/lIaUUpRoFUsyaBZHQMUz7eVs1sN1fZQoaAZoCWgPQwj27LlMTYLYv5SGlFKUaBVLMmgWR0DFM7oEU0vXdX2UKGgGaAloD0MIG0zD8BEx3b+UhpRSlGgVSzJoFkdAxTOSGlANX3V9lChoBmgJaA9DCNALdy6M9Ne/lIaUUpRoFUsyaBZHQMUzdMTviLl1fZQoaAZoCWgPQwhtrMQ8K2nJv5SGlFKUaBVLMmgWR0DFM1ob0e2edX2UKGgGaAloD0MIngYMkj6t0r+UhpRSlGgVSzJoFkdAxTM34AS39nV9lChoBmgJaA9DCMkBu5o8Zd+/lIaUUpRoFUsyaBZHQMUzFGsvIwN1fZQoaAZoCWgPQwiSA3Y1ecrhv5SGlFKUaBVLMmgWR0DFMvlA/s3RdX2UKGgGaAloD0MIkzmWd9UDyL+UhpRSlGgVSzJoFkdAxTLeHqNZNnV9lChoBmgJaA9DCCJseHqlLNi/lIaUUpRoFUsyaBZHQMUyxSWZ7Xx1fZQoaAZoCWgPQwh48umxLQPSv5SGlFKUaBVLMmgWR0DFMqkAq/dqdX2UKGgGaAloD0MIE/JBz2bV2b+UhpRSlGgVSzJoFkdAxTKPdNWU8nV9lChoBmgJaA9DCF1r71NVaOK/lIaUUpRoFUsyaBZHQMUydaMR6GB1fZQoaAZoCWgPQwg+XkiHh7Div5SGlFKUaBVLMmgWR0DFMlg2qDK6dX2UKGgGaAloD0MId2ouNxjq1r+UhpRSlGgVSzJoFkdAxTI5Uaya/nV9lChoBmgJaA9DCNlBJa5jXNS/lIaUUpRoFUsyaBZHQMUyIQr1/Uh1fZQoaAZoCWgPQwjeHRmrzf/Tv5SGlFKUaBVLMmgWR0DFMgRSBK+SdX2UKGgGaAloD0MI1J6Sc2IPy7+UhpRSlGgVSzJoFkdAxTHmZ9d/rnV9lChoBmgJaA9DCDRo6J/gYuK/lIaUUpRoFUsyaBZHQMUxzoUJv5x1fZQoaAZoCWgPQwge3nNgOULVv5SGlFKUaBVLMmgWR0DFMbD/p+tsdX2UKGgGaAloD0MITtU9srlq0b+UhpRSlGgVSzJoFkdAxTGf70nPV3V9lChoBmgJaA9DCFbUYBqGj9+/lIaUUpRoFUsyaBZHQMUxin8TBZZ1fZQoaAZoCWgPQwie0yzQ7pDbv5SGlFKUaBVLMmgWR0DFMXnTw2ETdX2UKGgGaAloD0MIuMmoMow74L+UhpRSlGgVSzJoFkdAxTFpsC1Z1XV9lChoBmgJaA9DCM0DWOTXD9m/lIaUUpRoFUsyaBZHQMUxWcRUWEd1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 15625,
89
+ "n_steps": 8,
90
+ "gamma": 0.95,
91
+ "gae_lambda": 0.9,
92
+ "ent_coef": 0.05,
93
+ "vf_coef": 0.4,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": true
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c9dd2b2c7940e8e737047b63d791a959b8e26775f9ad11b22e19512a75b6fa
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539d85ed0158931e8d83b176f5c40f228f7651332602bb107609153022c90d2b
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3ae3edb430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3ae3ed3ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 32, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678176330532125362, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoloABAAAAAAAAL/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/L/fWPqBUrzpFzQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksgSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoloABAAAAAAAADM6RPzJRy77bTNu/7GpiPiZQqL+Xg4e+etCOP7Le0b9Hx0o/I5eOP/S0qL4HoQU/jZ7FPz1igT05Gim/pNjGv66rtD8bq4C+Mfiyvwtn3L9gBdU/XHdQvybp1z83NMS/a6hfP9LVQL8W1Km/bpnvPktkA722e/o+tpNoP/T/oj2WMmU+49x0PxbFl7+OmjY+HqrAv5HUCT82Urk+QqEXvsnEN793xUu/o86bP2OWFT8fnhk/+pFDPiWbzj4PRdS/cruEPwzjbz/hpW2/dJakP8S3lL8oehm/HsHFP10UA7+tA2W/rYMHvzypob8s/Hk/vaNTP4JhlL+HsKW/FWgePk7nXL1osK0/F8dfPp8tKD9KT26+XI8Zv7H6wj9D17I+krsBvxM8lL9oD9c+NSZVP0Gsrj8Wv22/uFSiP5HxwD/TeIW/lvjVvqYaaz+gT28+NI+Jv74pwj+oF9Y/fvXYvTPZsj/nn0g/GBVYP7iwEL+BHWg/LHT8vuYkrz9s4G2+lGgOSyBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAMAAAAAAAAv99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz0v99Y+oFSvOkXNCT8moLs9ocGUutDKYz2UaA5LIEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]\n [0.4198546 0.00133767 0.5382884 ]]", "desired_goal": "[[ 1.1391006 -0.39710385 -1.713283 ]\n [ 0.221111 -1.3149459 -0.26467583]\n [ 1.1157372 -1.6396086 0.79210323]\n [ 1.1139873 -0.32950556 0.52198833]\n [ 1.5439011 0.06317566 -0.6605564 ]\n [-1.5534863 1.4114892 -0.25130543]\n [-1.3981992 -1.7218946 1.6642265 ]\n [-0.8143213 1.6868026 -1.5328435 ]\n [ 0.8736636 -0.75326264 -1.3267848 ]\n [ 0.46796745 -0.03207807 0.4892251 ]\n [ 0.9085039 0.07958975 0.22382578]\n [ 0.95649546 -1.1857021 0.17832395]\n [-1.5051916 0.53839976 0.36195534]\n [-0.14807609 -0.71784645 -0.7959818 ]\n [ 1.2172436 0.58432597 0.600069 ]\n [ 0.19098654 0.4035274 -1.6583575 ]\n [ 1.0369704 0.9370582 -0.92831236]\n [ 1.2858415 -1.1618581 -0.5995202 ]\n [ 1.544956 -0.51202947 -0.89458734]\n [-0.52935296 -1.2629771 0.9765041 ]\n [ 0.8267172 -1.1592257 -1.2944497 ]\n [ 0.15469392 -0.05393153 1.356946 ]\n [ 0.2185329 0.6569461 -0.23272434]\n [-0.59984374 1.5232755 0.34929857]\n [-0.50676835 -1.1580833 0.42003942]\n [ 0.83261424 1.3646318 -0.928697 ]\n [ 1.2682104 1.507372 -1.0427498 ]\n [-0.4179122 0.9183754 0.23370218]\n [-1.0746827 1.5168989 1.6725969 ]\n [-0.10593699 1.3972534 0.7836899 ]\n [ 0.84407187 -0.5651965 0.9067002 ]\n [-0.49307382 1.3683136 -0.23230141]]", "observation": "[[ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]\n [ 0.4198546 0.00133767 0.5382884 0.09161405 -0.00113492 0.05561334]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoloABAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksgSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoloABAAAAAAAA0lzwPTcjzT3HYRk+9XHOPAuDC71H1JA+torzPQ/VCr7lekY8m2EHvqJoCL7hM6Q9Zkx3vVgyFr5axso9nBHCvKerqrzvyTY+qpRvPGmf8D3DCCM+jMQPvoJOBD6XGw8+jRrevZA2uz1siFY+WtYsPbnZ3T1S+II+tMECPjTM/r3sIoI+IX0Fvcyp3DwIW7k9qj0NvkDUwL1YXoY9T+YHPtS+8zyZ4og+AHMNvhHzoD1VjRo+BCnxPaFEALy9m44+k2H3PdiKDr5+5gk9V9bpvfRlkr0QeJ49BcOrPaKR+j1KJt49H291vZlH+b2Jfhs+IuktvWkvEb4h9vo9e3v8PXeOUbzzvZA+nRqwPfxmrD0VJR0+DpLkO+XKnTvLgjg+NPVEPCaO6T0w54A+ue/CPT+0D76sotk7SW8SvfX9sjwcbpU+L4mpPcmMIj1mtm0+ld0xvRP+yTmOO3Y9rNPpvXFQJ71oQgY8Hb8rPCPxyrwkARY+nYIKvoI5Gz1o/mo+lGgOSyBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LIEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11736454 0.10016482 0.14978705]\n [ 0.02520082 -0.03406052 0.28286955]\n [ 0.11891691 -0.13557838 0.01211426]\n [-0.13220827 -0.13321164 0.08017708]\n [-0.06037559 -0.14667642 0.09901114]\n [-0.02369004 -0.0208338 0.17850469]\n [ 0.01462285 0.11749155 0.15921311]\n [-0.1403982 0.12920573 0.13975368]\n [-0.10844908 0.09141266 0.20950478]\n [ 0.04219661 0.10832543 0.25580078]\n [ 0.12769204 -0.12441292 0.25417268]\n [-0.03259004 0.02693643 0.09050566]\n [-0.13793054 -0.09415483 0.06560963]\n [ 0.1327145 0.02975408 0.2673538 ]\n [-0.138134 0.07858861 0.15092976]\n [ 0.11775401 -0.00782886 0.27853194]\n [ 0.12079158 -0.13920152 0.03366708]\n [-0.11417835 -0.07148352 0.07737744]\n [ 0.08386806 0.12234809 0.10847147]\n [-0.05992043 -0.12171859 0.15184988]\n [-0.04245866 -0.14178242 0.12253977]\n [ 0.1232824 -0.01279031 0.2826992 ]\n [ 0.08598826 0.0841808 0.15346177]\n [ 0.00697542 0.00481545 0.18018644]\n [ 0.01202135 0.11404066 0.25176382]\n [ 0.0951838 -0.14033602 0.00664171]\n [-0.03575066 0.02184961 0.2918557 ]\n [ 0.08278119 0.03968504 0.2321411 ]\n [-0.04342421 0.00038527 0.06011539]\n [-0.11417326 -0.0408482 0.00819454]\n [ 0.01048258 -0.02477319 0.14648873]\n [-0.13526388 0.03789664 0.22948611]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRE30+Sgj3b+UhpRSlIwBbJRLMowBdJRHQMUq5ro4dZJ1fZQoaAZoCWgPQwgRcXMqGQDGv5SGlFKUaBVLMmgWR0DFKtYeYD1XdX2UKGgGaAloD0MIPzbJj/gV3r+UhpRSlGgVSzJoFkdAxSrGAoXsPnV9lChoBmgJaA9DCPTBMjZ0s96/lIaUUpRoFUsyaBZHQMUqthScbzd1fZQoaAZoCWgPQwjpJ5zdWibHv5SGlFKUaBVLMmgWR0DFMHeYUnG9dX2UKGgGaAloD0MId01Iaww62b+UhpRSlGgVSzJoFkdAxTBixjawlnV9lChoBmgJaA9DCGx3D9B9Ode/lIaUUpRoFUsyaBZHQMUwOPN3W4F1fZQoaAZoCWgPQwjNPo9RnnnUv5SGlFKUaBVLMmgWR0DFL/msYEW7dX2UKGgGaAloD0MILXqnAu5507+UhpRSlGgVSzJoFkdAxS+9DXOGCnV9lChoBmgJaA9DCM1XycfuAtS/lIaUUpRoFUsyaBZHQMUvgZ7w8W91fZQoaAZoCWgPQwhPrFPle0bSv5SGlFKUaBVLMmgWR0DFL1D92ovSdX2UKGgGaAloD0MIldQJaCJs27+UhpRSlGgVSzJoFkdAxS8db7CSBHV9lChoBmgJaA9DCG5qoPmcu8e/lIaUUpRoFUsyaBZHQMUu6ZOBUaR1fZQoaAZoCWgPQwiOIJViR+PTv5SGlFKUaBVLMmgWR0DFLsFhVlwtdX2UKGgGaAloD0MIZmt9kdCW1r+UhpRSlGgVSzJoFkdAxS6kBYmsvXV9lChoBmgJaA9DCFx2iH/Y0te/lIaUUpRoFUsyaBZHQMUuiV27nPp1fZQoaAZoCWgPQwiX/brTnSfYv5SGlFKUaBVLMmgWR0DFLmcqDsdDdX2UKGgGaAloD0MI9IsS9Bd6yr+UhpRSlGgVSzJoFkdAxS5DwPy08nV9lChoBmgJaA9DCEDdQIF38ta/lIaUUpRoFUsyaBZHQMUuKKp1ifB1fZQoaAZoCWgPQwiXcymuKvvIv5SGlFKUaBVLMmgWR0DFLg2QGOdYdX2UKGgGaAloD0MIFop0P6cg0L+UhpRSlGgVSzJoFkdAxS30ncclxHV9lChoBmgJaA9DCN3QlJ1+0OC/lIaUUpRoFUsyaBZHQMUt2H/Lkjp1fZQoaAZoCWgPQwgpmDEFa5zWv5SGlFKUaBVLMmgWR0DFLb8Hv+fidX2UKGgGaAloD0MI1hu1wvS9xr+UhpRSlGgVSzJoFkdAxS2lOVPepHV9lChoBmgJaA9DCDpa1ZKOctq/lIaUUpRoFUsyaBZHQMUth5gG8mN1fZQoaAZoCWgPQwh6w33k1qTav5SGlFKUaBVLMmgWR0DFLWjJp35fdX2UKGgGaAloD0MIYLGGi9zT0L+UhpRSlGgVSzJoFkdAxS1QiC8OC3V9lChoBmgJaA9DCI0kQbgCCtS/lIaUUpRoFUsyaBZHQMUtM87ZFod1fZQoaAZoCWgPQwiKzFzg8ljVv5SGlFKUaBVLMmgWR0DFLRXio86ndX2UKGgGaAloD0MIL6NYbmk12b+UhpRSlGgVSzJoFkdAxSz+DQqqfnV9lChoBmgJaA9DCAOWXMXiN8u/lIaUUpRoFUsyaBZHQMUs4JIDoyN1fZQoaAZoCWgPQwjG+ZtQiIDbv5SGlFKUaBVLMmgWR0DFLM+DnNgSdX2UKGgGaAloD0MIFOrpI/CH07+UhpRSlGgVSzJoFkdAxSy6HDaXbHV9lChoBmgJaA9DCGGJB5RNudi/lIaUUpRoFUsyaBZHQMUsqYYJmd11fZQoaAZoCWgPQwhKmj+mtWnSv5SGlFKUaBVLMmgWR0DFLJl0DEFXdX2UKGgGaAloD0MIPnjt0obD0r+UhpRSlGgVSzJoFkdAxSyJjG1hLHV9lChoBmgJaA9DCBtivOZVndy/lIaUUpRoFUsyaBZHQMUy9d4NZvF1fZQoaAZoCWgPQwgDWyVYHM7gv5SGlFKUaBVLMmgWR0DFMuFJpWWAdX2UKGgGaAloD0MI+kMzT64pwr+UhpRSlGgVSzJoFkdAxTK31K5CnnV9lChoBmgJaA9DCIZyol2FFOG/lIaUUpRoFUsyaBZHQMUyeMyad+Z1fZQoaAZoCWgPQwg9mBQfn5DZv5SGlFKUaBVLMmgWR0DFMjx+c6NmdX2UKGgGaAloD0MIiL1QwHYwwL+UhpRSlGgVSzJoFkdAxTIBKOktVnV9lChoBmgJaA9DCD1IT5FDxNG/lIaUUpRoFUsyaBZHQMUx0MySFGp1fZQoaAZoCWgPQwjf4XZoWIzdv5SGlFKUaBVLMmgWR0DFMZ1et0V8dX2UKGgGaAloD0MIbeF5qdiYxb+UhpRSlGgVSzJoFkdAxTFps41gpnV9lChoBmgJaA9DCEPFOH8TCs+/lIaUUpRoFUsyaBZHQMUxQcf/3nJ1fZQoaAZoCWgPQwgbEYyDS8fgv5SGlFKUaBVLMmgWR0DFMSSdrftQdX2UKGgGaAloD0MIRYE+kSdJ0r+UhpRSlGgVSzJoFkdAxTEKHFglW3V9lChoBmgJaA9DCCxKCcGqetS/lIaUUpRoFUsyaBZHQMUw6B/RVp91fZQoaAZoCWgPQwikpfJ2hFPjv5SGlFKUaBVLMmgWR0DFMMU8vEjxdX2UKGgGaAloD0MIrdo1Ia0x2L+UhpRSlGgVSzJoFkdAxTCqSdOIqXV9lChoBmgJaA9DCCCaeXJNgeC/lIaUUpRoFUsyaBZHQMUwj2Xb/Ot1fZQoaAZoCWgPQwj7A+W2fY/Xv5SGlFKUaBVLMmgWR0DFMHarq+rVdX2UKGgGaAloD0MIRl9BmrFo1b+UhpRSlGgVSzJoFkdAxTBavicXnHV9lChoBmgJaA9DCDZ39L9ci9i/lIaUUpRoFUsyaBZHQMUwQXfZVXF1fZQoaAZoCWgPQwinXUwz3evMv5SGlFKUaBVLMmgWR0DFMCfczqKQdX2UKGgGaAloD0MII4PcRZii4L+UhpRSlGgVSzJoFkdAxTAKeT3Zf3V9lChoBmgJaA9DCOaxZmSQu+C/lIaUUpRoFUsyaBZHQMUv6+w9q1x1fZQoaAZoCWgPQwg2eF+VC5XDv5SGlFKUaBVLMmgWR0DFL9PmcOLBdX2UKGgGaAloD0MIRfXWwFYJ4L+UhpRSlGgVSzJoFkdAxS+3ShrWRXV9lChoBmgJaA9DCIFc4sgDkd+/lIaUUpRoFUsyaBZHQMUvmfEXLvF1fZQoaAZoCWgPQwj9T/7uHTXWv5SGlFKUaBVLMmgWR0DFL4JEpiI+dX2UKGgGaAloD0MIyCQjZ2FP2r+UhpRSlGgVSzJoFkdAxS9lC0ngHnV9lChoBmgJaA9DCFmmXyLeOtS/lIaUUpRoFUsyaBZHQMUvVEOiFkB1fZQoaAZoCWgPQwhPkUPEzanUv5SGlFKUaBVLMmgWR0DFLz8PUaybdX2UKGgGaAloD0MIGZEotKz71r+UhpRSlGgVSzJoFkdAxS8uuJUHZHV9lChoBmgJaA9DCAfqlEc3wtS/lIaUUpRoFUsyaBZHQMUvHxTsIE91fZQoaAZoCWgPQwj/QLlt36PVv5SGlFKUaBVLMmgWR0DFLw9KqXF+dX2UKGgGaAloD0MIlG3gDtQp4b+UhpRSlGgVSzJoFkdAxTVIC2+fy3V9lChoBmgJaA9DCLFppRDIJcy/lIaUUpRoFUsyaBZHQMU1M0PhAGB1fZQoaAZoCWgPQwg900uMZfrbv5SGlFKUaBVLMmgWR0DFNQlyzXz2dX2UKGgGaAloD0MIHvruVpbo2L+UhpRSlGgVSzJoFkdAxTTKMI/qxHV9lChoBmgJaA9DCGw9Qzhm2du/lIaUUpRoFUsyaBZHQMU0jYl6Z6V1fZQoaAZoCWgPQwjltn2P+uvXv5SGlFKUaBVLMmgWR0DFNFIGD+R6dX2UKGgGaAloD0MIjZYDPdS20r+UhpRSlGgVSzJoFkdAxTQhcpLEk3V9lChoBmgJaA9DCIs3Mo/8wdC/lIaUUpRoFUsyaBZHQMUz7eVs1sN1fZQoaAZoCWgPQwj27LlMTYLYv5SGlFKUaBVLMmgWR0DFM7oEU0vXdX2UKGgGaAloD0MIG0zD8BEx3b+UhpRSlGgVSzJoFkdAxTOSGlANX3V9lChoBmgJaA9DCNALdy6M9Ne/lIaUUpRoFUsyaBZHQMUzdMTviLl1fZQoaAZoCWgPQwhtrMQ8K2nJv5SGlFKUaBVLMmgWR0DFM1ob0e2edX2UKGgGaAloD0MIngYMkj6t0r+UhpRSlGgVSzJoFkdAxTM34AS39nV9lChoBmgJaA9DCMkBu5o8Zd+/lIaUUpRoFUsyaBZHQMUzFGsvIwN1fZQoaAZoCWgPQwiSA3Y1ecrhv5SGlFKUaBVLMmgWR0DFMvlA/s3RdX2UKGgGaAloD0MIkzmWd9UDyL+UhpRSlGgVSzJoFkdAxTLeHqNZNnV9lChoBmgJaA9DCCJseHqlLNi/lIaUUpRoFUsyaBZHQMUyxSWZ7Xx1fZQoaAZoCWgPQwh48umxLQPSv5SGlFKUaBVLMmgWR0DFMqkAq/dqdX2UKGgGaAloD0MIE/JBz2bV2b+UhpRSlGgVSzJoFkdAxTKPdNWU8nV9lChoBmgJaA9DCF1r71NVaOK/lIaUUpRoFUsyaBZHQMUydaMR6GB1fZQoaAZoCWgPQwg+XkiHh7Div5SGlFKUaBVLMmgWR0DFMlg2qDK6dX2UKGgGaAloD0MId2ouNxjq1r+UhpRSlGgVSzJoFkdAxTI5Uaya/nV9lChoBmgJaA9DCNlBJa5jXNS/lIaUUpRoFUsyaBZHQMUyIQr1/Uh1fZQoaAZoCWgPQwjeHRmrzf/Tv5SGlFKUaBVLMmgWR0DFMgRSBK+SdX2UKGgGaAloD0MI1J6Sc2IPy7+UhpRSlGgVSzJoFkdAxTHmZ9d/rnV9lChoBmgJaA9DCDRo6J/gYuK/lIaUUpRoFUsyaBZHQMUxzoUJv5x1fZQoaAZoCWgPQwge3nNgOULVv5SGlFKUaBVLMmgWR0DFMbD/p+tsdX2UKGgGaAloD0MITtU9srlq0b+UhpRSlGgVSzJoFkdAxTGf70nPV3V9lChoBmgJaA9DCFbUYBqGj9+/lIaUUpRoFUsyaBZHQMUxin8TBZZ1fZQoaAZoCWgPQwie0yzQ7pDbv5SGlFKUaBVLMmgWR0DFMXnTw2ETdX2UKGgGaAloD0MIuMmoMow74L+UhpRSlGgVSzJoFkdAxTFpsC1Z1XV9lChoBmgJaA9DCM0DWOTXD9m/lIaUUpRoFUsyaBZHQMUxWcRUWEd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 8, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.05, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (290 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2845255635038484, "std_reward": 0.13850471962673844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T11:14:47.602236"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c8b60136f08726cf53d423c8b410a4e0c53c9b0242d486c4af4dc1d3350050a
3
+ size 3056