venkat-srinivasan-nexusflow
commited on
Upload 3 files
Browse files- .gitattributes +1 -0
- agent.png +3 -0
- example/vllm_v2_extraction_agent.py +287 -0
- example/vllm_v2_weather_agent.py +234 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
agent.png filter=lfs diff=lfs merge=lfs -text
|
agent.png
ADDED
Git LFS Details
|
example/vllm_v2_extraction_agent.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Dict, Any, Optional
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from openai import OpenAI
|
7 |
+
|
8 |
+
"""
|
9 |
+
EXAMPLE OUTPUT:
|
10 |
+
|
11 |
+
What is the current population for the city where Einstein was born?
|
12 |
+
|
13 |
+
Turn 1
|
14 |
+
----------------------------------------
|
15 |
+
|
16 |
+
Executing: fetch_wiki_content
|
17 |
+
Arguments: {'title': 'Albert Einstein'}
|
18 |
+
|
19 |
+
Turn 2
|
20 |
+
----------------------------------------
|
21 |
+
|
22 |
+
Executing: deliver_answer
|
23 |
+
Arguments: {'fields': ['Ulm, German Empire']}
|
24 |
+
ANSWER FROM THE ASSISTANT: ['Ulm, German Empire']
|
25 |
+
|
26 |
+
Turn 3
|
27 |
+
----------------------------------------
|
28 |
+
|
29 |
+
Executing: fetch_wiki_content
|
30 |
+
Arguments: {'title': 'Ulm'}
|
31 |
+
|
32 |
+
Turn 4
|
33 |
+
----------------------------------------
|
34 |
+
|
35 |
+
Executing: deliver_answer
|
36 |
+
Arguments: {'fields': ['128,928']}
|
37 |
+
ANSWER FROM THE ASSISTANT: ['128,928']
|
38 |
+
|
39 |
+
Turn 5
|
40 |
+
----------------------------------------
|
41 |
+
Extraction Complete
|
42 |
+
|
43 |
+
|
44 |
+
Why was Einstein famous?
|
45 |
+
|
46 |
+
Turn 1
|
47 |
+
----------------------------------------
|
48 |
+
|
49 |
+
Executing: fetch_wiki_content
|
50 |
+
Arguments: {'title': 'Albert Einstein'}
|
51 |
+
|
52 |
+
Turn 2
|
53 |
+
----------------------------------------
|
54 |
+
|
55 |
+
Executing: deliver_answer
|
56 |
+
Arguments: {'fields': ['Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics.', 'His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world\'s most famous equation."', 'He received the 1921 Nobel Prize in Physics.']}
|
57 |
+
ANSWER FROM THE ASSISTANT: ['Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics.', 'His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world\'s most famous equation."', 'He received the 1921 Nobel Prize in Physics.']
|
58 |
+
|
59 |
+
Turn 3
|
60 |
+
----------------------------------------
|
61 |
+
Extraction Complete
|
62 |
+
"""
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class WikiConfig:
|
66 |
+
"""Configuration for OpenAI and Wikipedia settings"""
|
67 |
+
api_key: str = "sk-123"
|
68 |
+
api_base: str = "{info}/v1"
|
69 |
+
model: Optional[str] = None
|
70 |
+
max_turns: int = 5
|
71 |
+
wikipedia_base_url: str = "https://en.wikipedia.org/wiki/"
|
72 |
+
|
73 |
+
class WikiTools:
|
74 |
+
"""Collection of Wikipedia and extraction tools"""
|
75 |
+
|
76 |
+
def __init__(self, base_url: str):
|
77 |
+
self.base_url = base_url
|
78 |
+
|
79 |
+
def fetch_wiki_content(self, title: str, section: Optional[str] = None) -> str:
|
80 |
+
"""Fetch and clean Wikipedia article content, optionally from a specific section"""
|
81 |
+
url = f"{self.base_url}{title.replace(' ', '_')}"
|
82 |
+
response = requests.get(url)
|
83 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
84 |
+
|
85 |
+
# Remove unwanted sections
|
86 |
+
for unwanted in soup.find_all(['script', 'style', 'footer', 'header']):
|
87 |
+
unwanted.decompose()
|
88 |
+
|
89 |
+
if section:
|
90 |
+
# Find specific section if requested
|
91 |
+
section_tag = soup.find('span', {'id': section})
|
92 |
+
if section_tag:
|
93 |
+
content = section_tag.parent.find_next_siblings()
|
94 |
+
text = ' '.join(tag.get_text() for tag in content)
|
95 |
+
else:
|
96 |
+
return "Section not found"
|
97 |
+
else:
|
98 |
+
# Get main content
|
99 |
+
content = soup.find(id='mw-content-text')
|
100 |
+
if content:
|
101 |
+
text = content.get_text()
|
102 |
+
else:
|
103 |
+
return "Content not found"
|
104 |
+
|
105 |
+
# Clean and normalize text
|
106 |
+
text = ' '.join(text.split())
|
107 |
+
return text[:8000] # Truncate to avoid token limits
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def deliver_answer(fields: List[str]) -> Dict[str, Any]:
|
111 |
+
"""Extract specific information from text spans"""
|
112 |
+
print (f"ANSWER FROM THE ASSISTANT: {fields}")
|
113 |
+
return {
|
114 |
+
"extracted_fields": "Provided fields was delivered to the user successfully."
|
115 |
+
}
|
116 |
+
|
117 |
+
class ToolRegistry:
|
118 |
+
"""Registry of available tools and their schemas"""
|
119 |
+
|
120 |
+
def __init__(self, wiki_tools: WikiTools):
|
121 |
+
self.wiki_tools = wiki_tools
|
122 |
+
|
123 |
+
@property
|
124 |
+
def available_functions(self) -> Dict[str, callable]:
|
125 |
+
return {
|
126 |
+
"fetch_wiki_content": self.wiki_tools.fetch_wiki_content,
|
127 |
+
"deliver_answer": self.wiki_tools.deliver_answer
|
128 |
+
}
|
129 |
+
|
130 |
+
@property
|
131 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
132 |
+
return [
|
133 |
+
{
|
134 |
+
"type": "function",
|
135 |
+
"function": {
|
136 |
+
"name": "fetch_wiki_content",
|
137 |
+
"description": "Fetch content from a Wikipedia article",
|
138 |
+
"parameters": {
|
139 |
+
"type": "object",
|
140 |
+
"properties": {
|
141 |
+
"title": {
|
142 |
+
"type": "string",
|
143 |
+
"description": "The title of the Wikipedia article"
|
144 |
+
},
|
145 |
+
"section": {
|
146 |
+
"type": "string",
|
147 |
+
"description": "Optional: Specific section ID to fetch",
|
148 |
+
"optional": True
|
149 |
+
}
|
150 |
+
},
|
151 |
+
"required": ["title"]
|
152 |
+
}
|
153 |
+
}
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"type": "function",
|
157 |
+
"function": {
|
158 |
+
"name": "deliver_answer",
|
159 |
+
"description": "Extract specific information from the fetched text",
|
160 |
+
"parameters": {
|
161 |
+
"type": "object",
|
162 |
+
"properties": {
|
163 |
+
"fields": {
|
164 |
+
"type": "array",
|
165 |
+
"items": {"type": "string"},
|
166 |
+
"description": "List of text spans from the article that are relevant to the query"
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"required": ["fields"]
|
170 |
+
}
|
171 |
+
}
|
172 |
+
}
|
173 |
+
]
|
174 |
+
|
175 |
+
class WikiExtractionAgent:
|
176 |
+
"""Main agent class that handles the extraction process"""
|
177 |
+
|
178 |
+
def __init__(self, config: WikiConfig):
|
179 |
+
self.config = config
|
180 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
181 |
+
self.wiki_tools = WikiTools(config.wikipedia_base_url)
|
182 |
+
self.tools = ToolRegistry(self.wiki_tools)
|
183 |
+
self.messages = [{"system" : "1. First fetch any wikipedia pages you might need to answer the user query. Do not answer from parametric knowledge.\n\n2.Then, provide the answer to the user using the deliver_answer from the retrieved wikipedia page.\n\n3. You may need to issue multiple calls to wikipedia after extracting answers if there are nested dependencies for information."}]
|
184 |
+
|
185 |
+
if not config.model:
|
186 |
+
models = self.client.models.list()
|
187 |
+
self.config.model = models.data[0].id
|
188 |
+
|
189 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
190 |
+
"""Convert tool call to serializable format"""
|
191 |
+
return {
|
192 |
+
"id": tool_call.id,
|
193 |
+
"type": tool_call.type,
|
194 |
+
"function": {
|
195 |
+
"name": tool_call.function.name,
|
196 |
+
"arguments": tool_call.function.arguments
|
197 |
+
}
|
198 |
+
}
|
199 |
+
|
200 |
+
def process_tool_calls(self, message) -> List[Dict[str, Any]]:
|
201 |
+
"""Process and execute tool calls from assistant"""
|
202 |
+
results = []
|
203 |
+
|
204 |
+
for tool_call in message.tool_calls:
|
205 |
+
function_name = tool_call.function.name
|
206 |
+
function_args = json.loads(tool_call.function.arguments)
|
207 |
+
|
208 |
+
print(f"\nExecuting: {function_name}")
|
209 |
+
print(f"Arguments: {function_args}")
|
210 |
+
|
211 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
212 |
+
results.append({
|
213 |
+
"tool": function_name,
|
214 |
+
"args": function_args,
|
215 |
+
"response": function_response
|
216 |
+
})
|
217 |
+
|
218 |
+
self.messages.append({
|
219 |
+
"role": "tool",
|
220 |
+
"content": json.dumps(function_response),
|
221 |
+
"tool_call_id": tool_call.id,
|
222 |
+
"name": function_name
|
223 |
+
})
|
224 |
+
|
225 |
+
return results
|
226 |
+
|
227 |
+
def extract_information(self, query: str) -> List[Dict[str, Any]]:
|
228 |
+
"""Main method to handle the extraction process"""
|
229 |
+
self.messages = [{
|
230 |
+
"role": "user",
|
231 |
+
"content": f"""Extract information from Wikipedia to answer this query: {query}
|
232 |
+
|
233 |
+
You can use these tools:
|
234 |
+
1. fetch_wiki_content: Get article content
|
235 |
+
2. deliver_answer: deliver relevant information
|
236 |
+
|
237 |
+
Please fetch content first, and iterate as needed to get to the webpage with the correct answer and then deliver the relevant information."""
|
238 |
+
}]
|
239 |
+
|
240 |
+
all_results = []
|
241 |
+
|
242 |
+
for turn in range(self.config.max_turns):
|
243 |
+
print(f"\nTurn {turn + 1}")
|
244 |
+
print("-" * 40)
|
245 |
+
|
246 |
+
response = self.client.chat.completions.create(
|
247 |
+
messages=self.messages,
|
248 |
+
model=self.config.model,
|
249 |
+
tools=self.tools.tool_schemas,
|
250 |
+
temperature=0.0,
|
251 |
+
)
|
252 |
+
|
253 |
+
message = response.choices[0].message
|
254 |
+
|
255 |
+
if not message.tool_calls:
|
256 |
+
print("Extraction Complete")
|
257 |
+
break
|
258 |
+
|
259 |
+
self.messages.append({
|
260 |
+
"role": "assistant",
|
261 |
+
"content": json.dumps(message.content),
|
262 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
263 |
+
})
|
264 |
+
|
265 |
+
results = self.process_tool_calls(message)
|
266 |
+
all_results.extend(results)
|
267 |
+
|
268 |
+
return all_results
|
269 |
+
|
270 |
+
def main():
|
271 |
+
# Example usage
|
272 |
+
config = WikiConfig()
|
273 |
+
agent = WikiExtractionAgent(config)
|
274 |
+
|
275 |
+
# Multi-step query example
|
276 |
+
results = agent.extract_information(
|
277 |
+
query="""What is the current population for the city where Einstein was born?"""
|
278 |
+
)
|
279 |
+
|
280 |
+
# Single query example
|
281 |
+
results = agent.extract_information(
|
282 |
+
query="Why was Einstein famous?"
|
283 |
+
)
|
284 |
+
|
285 |
+
|
286 |
+
if __name__ == "__main__":
|
287 |
+
main()
|
example/vllm_v2_weather_agent.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import json
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
from openai import OpenAI
|
5 |
+
"""
|
6 |
+
EXAMPLE OUTPUT:
|
7 |
+
|
8 |
+
****************************************
|
9 |
+
RUNNING QUERY: What's the weather for Paris, TX in fahrenheit?
|
10 |
+
Turn 1
|
11 |
+
----------------------------------------
|
12 |
+
|
13 |
+
Executing: get_geo_coordinates
|
14 |
+
Arguments: {'city': 'Paris', 'state': 'TX'}
|
15 |
+
Response: The coordinates for Paris, TX are: latitude 33.6609, longitude 95.5555
|
16 |
+
|
17 |
+
Turn 2
|
18 |
+
----------------------------------------
|
19 |
+
|
20 |
+
Executing: get_current_weather
|
21 |
+
Arguments: {'latitude': [33.6609], 'longitude': [95.5555], 'unit': 'fahrenheit'}
|
22 |
+
Response: The weather is 85 degrees fahrenheit. It is partly cloudy, with highs in the 90's.
|
23 |
+
|
24 |
+
Turn 3
|
25 |
+
----------------------------------------
|
26 |
+
Conversation Complete
|
27 |
+
|
28 |
+
|
29 |
+
****************************************
|
30 |
+
RUNNING QUERY: Who won the most recent PGA?
|
31 |
+
Turn 1
|
32 |
+
----------------------------------------
|
33 |
+
|
34 |
+
Executing: no_relevant_function
|
35 |
+
Arguments: {'user_query_span': 'Who won the most recent PGA?'}
|
36 |
+
Response: No relevant function for your request was found. We will stop here.
|
37 |
+
|
38 |
+
Turn 2
|
39 |
+
----------------------------------------
|
40 |
+
Conversation Complete
|
41 |
+
"""
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class WeatherConfig:
|
45 |
+
"""Configuration for OpenAI and API settings"""
|
46 |
+
api_key: str = "" # FILL IN WITH YOUR VLLM_ENDPOINT_KEY
|
47 |
+
api_base: str = "" # FILL IN WITH YOUR VLLM_ENDPOINT
|
48 |
+
model: Optional[str] = None
|
49 |
+
max_turns: int = 5
|
50 |
+
|
51 |
+
class WeatherTools:
|
52 |
+
"""Collection of available tools/functions for the weather agent"""
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def get_current_weather(latitude: List[float], longitude: List[float], unit: str) -> str:
|
56 |
+
"""Get weather for given coordinates"""
|
57 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
58 |
+
return f"The weather is 85 degrees {unit}. It is partly cloudy, with highs in the 90's."
|
59 |
+
|
60 |
+
@staticmethod
|
61 |
+
def get_geo_coordinates(city: str, state: str) -> str:
|
62 |
+
"""Get coordinates for a given city"""
|
63 |
+
coordinates = {
|
64 |
+
"Dallas": {"TX": (32.7767, -96.7970)},
|
65 |
+
"San Francisco": {"CA": (37.7749, -122.4194)},
|
66 |
+
"Paris": {"TX": (33.6609, 95.5555)}
|
67 |
+
}
|
68 |
+
lat, lon = coordinates.get(city, {}).get(state, (0, 0))
|
69 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
70 |
+
return f"The coordinates for {city}, {state} are: latitude {lat}, longitude {lon}"
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def no_relevant_function(user_query_span : str) -> str:
|
74 |
+
return "No relevant function for your request was found. We will stop here."
|
75 |
+
|
76 |
+
class ToolRegistry:
|
77 |
+
"""Registry of available tools and their schemas"""
|
78 |
+
|
79 |
+
@property
|
80 |
+
def available_functions(self) -> Dict[str, callable]:
|
81 |
+
return {
|
82 |
+
"get_current_weather": WeatherTools.get_current_weather,
|
83 |
+
"get_geo_coordinates": WeatherTools.get_geo_coordinates,
|
84 |
+
"no_relevant_function" : WeatherTools.no_relevant_function,
|
85 |
+
}
|
86 |
+
|
87 |
+
@property
|
88 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
89 |
+
return [
|
90 |
+
{
|
91 |
+
"type": "function",
|
92 |
+
"function": {
|
93 |
+
"name": "get_current_weather",
|
94 |
+
"description": "Get the current weather in a given location. Use exact coordinates.",
|
95 |
+
"parameters": {
|
96 |
+
"type": "object",
|
97 |
+
"properties": {
|
98 |
+
"latitude": {"type": "array", "description": "The latitude for the city."},
|
99 |
+
"longitude": {"type": "array", "description": "The longitude for the city."},
|
100 |
+
"unit": {
|
101 |
+
"type": "string",
|
102 |
+
"description": "The unit to fetch the temperature in",
|
103 |
+
"enum": ["celsius", "fahrenheit"]
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"required": ["latitude", "longitude", "unit"]
|
107 |
+
}
|
108 |
+
}
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"type": "function",
|
112 |
+
"function": {
|
113 |
+
"name": "get_geo_coordinates",
|
114 |
+
"description": "Get the latitude and longitude for a given city",
|
115 |
+
"parameters": {
|
116 |
+
"type": "object",
|
117 |
+
"properties": {
|
118 |
+
"city": {"type": "string", "description": "The city to find coordinates for"},
|
119 |
+
"state": {"type": "string", "description": "The two-letter state abbreviation"}
|
120 |
+
},
|
121 |
+
"required": ["city", "state"]
|
122 |
+
}
|
123 |
+
}
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"type": "function",
|
127 |
+
"function" : {
|
128 |
+
"name": "no_relevant_function",
|
129 |
+
"description": "Call this when no other provided function can be called to answer the user query.",
|
130 |
+
"parameters": {
|
131 |
+
"type": "object",
|
132 |
+
"properties": {
|
133 |
+
"user_query_span": {
|
134 |
+
"type": "string",
|
135 |
+
"description": "The part of the user_query that cannot be answered by any other function calls."
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"required": ["user_query_span"]
|
139 |
+
}
|
140 |
+
}
|
141 |
+
}
|
142 |
+
]
|
143 |
+
|
144 |
+
class WeatherAgent:
|
145 |
+
"""Main agent class that handles the conversation and tool execution"""
|
146 |
+
|
147 |
+
def __init__(self, config: WeatherConfig):
|
148 |
+
self.config = config
|
149 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
150 |
+
self.tools = ToolRegistry()
|
151 |
+
self.messages = []
|
152 |
+
|
153 |
+
if not config.model:
|
154 |
+
models = self.client.models.list()
|
155 |
+
self.config.model = models.data[0].id
|
156 |
+
|
157 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
158 |
+
"""Convert tool call to serializable format"""
|
159 |
+
return {
|
160 |
+
"id": tool_call.id,
|
161 |
+
"type": tool_call.type,
|
162 |
+
"function": {
|
163 |
+
"name": tool_call.function.name,
|
164 |
+
"arguments": tool_call.function.arguments
|
165 |
+
}
|
166 |
+
}
|
167 |
+
|
168 |
+
def process_tool_calls(self, message) -> None:
|
169 |
+
"""Process and execute tool calls from assistant"""
|
170 |
+
for tool_call in message.tool_calls:
|
171 |
+
function_name = tool_call.function.name
|
172 |
+
function_args = json.loads(tool_call.function.arguments)
|
173 |
+
|
174 |
+
print(f"\nExecuting: {function_name}")
|
175 |
+
print(f"Arguments: {function_args}")
|
176 |
+
|
177 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
178 |
+
print(f"Response: {function_response}")
|
179 |
+
|
180 |
+
self.messages.append({
|
181 |
+
"role": "tool",
|
182 |
+
"content": json.dumps(function_response),
|
183 |
+
"tool_call_id": tool_call.id,
|
184 |
+
"name": function_name
|
185 |
+
})
|
186 |
+
|
187 |
+
def run_conversation(self, initial_query: str) -> None:
|
188 |
+
"""Run the main conversation loop"""
|
189 |
+
self.messages = [{"role": "user", "content": initial_query}]
|
190 |
+
|
191 |
+
print ("\n" * 5)
|
192 |
+
print ("*" * 40)
|
193 |
+
print (f"RUNNING QUERY: {initial_query}")
|
194 |
+
|
195 |
+
for turn in range(self.config.max_turns):
|
196 |
+
print(f"\nTurn {turn + 1}")
|
197 |
+
print("-" * 40)
|
198 |
+
|
199 |
+
response = self.client.chat.completions.create(
|
200 |
+
messages=self.messages,
|
201 |
+
model=self.config.model,
|
202 |
+
tools=self.tools.tool_schemas,
|
203 |
+
temperature=0.0,
|
204 |
+
)
|
205 |
+
|
206 |
+
message = response.choices[0].message
|
207 |
+
|
208 |
+
if not message.tool_calls:
|
209 |
+
print("Conversation Complete")
|
210 |
+
break
|
211 |
+
|
212 |
+
self.messages.append({
|
213 |
+
"role": "assistant",
|
214 |
+
"content": json.dumps(message.content),
|
215 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
216 |
+
})
|
217 |
+
|
218 |
+
self.process_tool_calls(message)
|
219 |
+
|
220 |
+
if turn >= self.config.max_turns - 1:
|
221 |
+
print("Maximum turns reached")
|
222 |
+
|
223 |
+
def main():
|
224 |
+
# Example usage
|
225 |
+
config = WeatherConfig()
|
226 |
+
agent = WeatherAgent(config)
|
227 |
+
agent.run_conversation("What's the weather for Paris, TX in fahrenheit?")
|
228 |
+
|
229 |
+
# Example OOD usage
|
230 |
+
agent.run_conversation("Who won the most recent PGA?")
|
231 |
+
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
main()
|