Zack Li
commited on
Commit
•
c11c4b2
1
Parent(s):
21f6fbf
Update README.md
Browse files
README.md
CHANGED
@@ -1,233 +1,99 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
### LoRA Configuration
|
12 |
-
|
13 |
-
```json
|
14 |
-
{
|
15 |
-
"lora_config": {
|
16 |
-
"lora_alpha": 32,
|
17 |
-
"lora_dropout": 0.05,
|
18 |
-
"lora_r": 16,
|
19 |
-
"lora_modulus": [
|
20 |
-
"q_proj",
|
21 |
-
"v_proj",
|
22 |
-
"o_proj",
|
23 |
-
"up_proj",
|
24 |
-
"down_proj"
|
25 |
-
]
|
26 |
-
}
|
27 |
-
}
|
28 |
-
```
|
29 |
-
|
30 |
-
### Experiment Tracking
|
31 |
-
|
32 |
-
- **Weights & Biases Run**: [View Run Details](https://wandb.ai/nexaai/nexa-sft-alex/runs/2fzr2wx9)
|
33 |
-
|
34 |
---
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
-
### Recommendations
|
97 |
-
|
98 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
99 |
-
|
100 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
101 |
-
|
102 |
-
## How to Get Started with the Model
|
103 |
-
|
104 |
-
Use the code below to get started with the model.
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
## Training Details
|
109 |
-
|
110 |
-
### Training Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
### Training Procedure
|
117 |
-
|
118 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
119 |
-
|
120 |
-
#### Preprocessing [optional]
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
|
125 |
-
#### Training Hyperparameters
|
126 |
-
|
127 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
128 |
-
|
129 |
-
#### Speeds, Sizes, Times [optional]
|
130 |
-
|
131 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
|
135 |
## Evaluation
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
### Testing Data, Factors & Metrics
|
140 |
-
|
141 |
-
#### Testing Data
|
142 |
-
|
143 |
-
<!-- This should link to a Dataset Card if possible. -->
|
144 |
-
|
145 |
-
[More Information Needed]
|
146 |
-
|
147 |
-
#### Factors
|
148 |
-
|
149 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
150 |
-
|
151 |
-
[More Information Needed]
|
152 |
-
|
153 |
-
#### Metrics
|
154 |
-
|
155 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Results
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Summary
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
## Model Examination [optional]
|
168 |
-
|
169 |
-
<!-- Relevant interpretability work for the model goes here -->
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Environmental Impact
|
174 |
-
|
175 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
176 |
-
|
177 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
178 |
-
|
179 |
-
- **Hardware Type:** [More Information Needed]
|
180 |
-
- **Hours used:** [More Information Needed]
|
181 |
-
- **Cloud Provider:** [More Information Needed]
|
182 |
-
- **Compute Region:** [More Information Needed]
|
183 |
-
- **Carbon Emitted:** [More Information Needed]
|
184 |
-
|
185 |
-
## Technical Specifications [optional]
|
186 |
|
187 |
-
### Model Architecture and Objective
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
#### Software
|
200 |
-
|
201 |
-
[More Information Needed]
|
202 |
-
|
203 |
-
## Citation [optional]
|
204 |
-
|
205 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
206 |
-
|
207 |
-
**BibTeX:**
|
208 |
-
|
209 |
-
[More Information Needed]
|
210 |
-
|
211 |
-
**APA:**
|
212 |
-
|
213 |
-
[More Information Needed]
|
214 |
-
|
215 |
-
## Glossary [optional]
|
216 |
-
|
217 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
218 |
-
|
219 |
-
[More Information Needed]
|
220 |
-
|
221 |
-
## More Information [optional]
|
222 |
-
|
223 |
-
[More Information Needed]
|
224 |
-
|
225 |
-
## Model Card Authors [optional]
|
226 |
-
|
227 |
-
[More Information Needed]
|
228 |
-
|
229 |
-
## Model Card Contact
|
230 |
-
|
231 |
-
[More Information Needed]
|
232 |
|
|
|
|
|
|
|
|
|
233 |
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- gemma
|
7 |
+
- function calling
|
8 |
+
- on-device language model
|
9 |
+
- android
|
10 |
+
- conversational
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
+
# Octopus V1: On-device language model for function calling of software APIs
|
14 |
+
<p align="center">
|
15 |
+
- <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Product</a>
|
16 |
+
- <a href="https://nexaai.github.io/octopus" target="_blank">ArXiv</a>
|
17 |
+
</p>
|
18 |
+
|
19 |
+
<p align="center" width="100%">
|
20 |
+
<a><img src="Octopus-logo.jpeg" alt="nexa-octopus" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a>
|
21 |
+
</p>
|
22 |
+
|
23 |
+
## Introducing Octopus-V2-2B
|
24 |
+
Octopus-V2-2B, an advanced open-source language model with 2 billion parameters, represents Nexa AI's research breakthrough in the application of large language models (LLMs) for function calling, specifically tailored for Android APIs. Unlike Retrieval-Augmented Generation (RAG) methods, which require detailed descriptions of potential function arguments—sometimes needing up to tens of thousands of input tokens—Octopus-V2-2B introduces a unique **functional token** strategy for both its training and inference stages. This approach not only allows it to achieve performance levels comparable to GPT-4 but also significantly enhances its inference speed beyond that of RAG-based methods, making it especially beneficial for edge computing devices.
|
25 |
+
|
26 |
+
📱 **On-device Applications**: Octopus-V2-2B is engineered to operate seamlessly on Android devices, extending its utility across a wide range of applications, from Android system management to the orchestration of multiple devices. Further demonstrations of its capabilities are available on the [Nexa AI Research Page](https://nexaai.github.io/octopus), showcasing its adaptability and potential for on-device integration.
|
27 |
+
|
28 |
+
🚀 **Inference Speed**: When benchmarked, Octopus-V2-2B demonstrates a remarkable inference speed, outperforming the combination of "Llama7B + RAG solution" by a factor of 36X on a single A100 GPU. Furthermore, compared to GPT-4-turbo (gpt-4-0125-preview), which relies on clusters A100/H100 GPUs, Octopus-V2-2B is 168% faster. This efficiency is attributed to our **functional token** design.
|
29 |
+
|
30 |
+
🐙 **Accuracy**: Octopus-V2-2B not only excels in speed but also in accuracy, surpassing the "Llama7B + RAG solution" in function call accuracy by 31%. It achieves a function call accuracy comparable to GPT-4 and RAG + GPT-3.5, with scores ranging between 98% and 100% across benchmark datasets.
|
31 |
+
|
32 |
+
💪 **Function Calling Capabilities**: Octopus-V2-2B is capable of generating individual, nested, and parallel function calls across a variety of complex scenarios.
|
33 |
+
|
34 |
+
## Example Use Cases
|
35 |
+
<p align="center" width="100%">
|
36 |
+
<a><img src="tool-usage-compressed.png" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a>
|
37 |
+
</p>
|
38 |
+
|
39 |
+
You can run the model on a GPU using the following code.
|
40 |
+
```python
|
41 |
+
from gemma.modeling_gemma import GemmaForCausalLM
|
42 |
+
from transformers import AutoTokenizer
|
43 |
+
import torch
|
44 |
+
import time
|
45 |
+
|
46 |
+
def inference(input_text):
|
47 |
+
start_time = time.time()
|
48 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)
|
49 |
+
input_length = input_ids["input_ids"].shape[1]
|
50 |
+
outputs = model.generate(
|
51 |
+
input_ids=input_ids["input_ids"],
|
52 |
+
max_length=1024,
|
53 |
+
do_sample=False)
|
54 |
+
generated_sequence = outputs[:, input_length:].tolist()
|
55 |
+
res = tokenizer.decode(generated_sequence[0])
|
56 |
+
end_time = time.time()
|
57 |
+
return {"output": res, "latency": end_time - start_time}
|
58 |
+
|
59 |
+
model_id = "NexaAIDev/android_API_10k_data"
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
+
model = GemmaForCausalLM.from_pretrained(
|
62 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
63 |
+
)
|
64 |
+
|
65 |
+
input_text = "Take a selfie for me with front camera"
|
66 |
+
nexa_query = f"Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: {input_text} \n\nResponse:"
|
67 |
+
start_time = time.time()
|
68 |
+
print("nexa model result:\n", inference(nexa_query))
|
69 |
+
print("latency:", time.time() - start_time," s")
|
70 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
## Evaluation
|
73 |
+
<p align="center" width="100%">
|
74 |
+
<a><img src="latency_plot.jpg" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto; margin-bottom: 20px;"></a>
|
75 |
+
<a><img src="accuracy_plot.jpg" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a>
|
76 |
+
</p>
|
77 |
|
78 |
+
## License
|
79 |
+
This model was trained on commercially viable data and is under the [Nexa AI community disclaimer](https://www.nexa4ai.com/disclaimer).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
81 |
|
82 |
+
## References
|
83 |
+
We thank the Google Gemma team for their amazing models!
|
84 |
+
```
|
85 |
+
@misc{gemma-2023-open-models,
|
86 |
+
author = {{Gemma Team, Google DeepMind}},
|
87 |
+
title = {Gemma: Open Models Based on Gemini Research and Technology},
|
88 |
+
url = {https://goo.gle/GemmaReport},
|
89 |
+
year = {2023},
|
90 |
+
}
|
91 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
## Citation
|
94 |
+
```
|
95 |
+
@misc{TODO}
|
96 |
+
```
|
97 |
|
98 |
+
## Contact
|
99 |
+
Please [contact us]([email protected]) to reach out for any issues and comments!
|