File size: 5,024 Bytes
f6e5414
a79b2ab
f6e5414
 
 
ee329f2
 
697fdb3
a79b2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e5414
623b2e1
f6e5414
c2a292e
 
b7e5633
 
 
f6e5414
 
a629f7d
 
0e69fd4
 
9e39ee8
0150065
9f3f03c
60ed5cb
 
99ce90f
2a9e628
 
9f3f03c
f6e5414
 
 
 
 
 
 
 
 
623b2e1
f6e5414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ffbe75
1e37536
f6e5414
4ffbe75
9e39ee8
a79b2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: apache-2.0
tags:
- mergekit
- merge
datasets:
- Intel/orca_dpo_pairs
- NeuralNovel/Neural-Story-v1
base_model:
- NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story
- NeuralNovel/Gecko-7B-v0.1-DPO
model-index:
- name: Tiger-7b-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.98
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.21
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 61.03
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.78
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NeuralNovel/Tiger-7b-v0.1
      name: Open LLM Leaderboard
---


![tiger](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/a9GqRTNoGZQsRVU-C6XRO.jpeg)


# Tiger-7b-v0.1

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

[Join our Discord!](https://discord.gg/rJXGjmxqzS)

<a href='https://ko-fi.com/S6S2UH2TC' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>


## Metrics



![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/Z58bB5sYr3pyE2Ilbk7Dk.png)



### Merge Method

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story](https://huggingface.co/NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story)
* [NeuralNovel/Gecko-7B-v0.1-DPO](https://huggingface.co/NeuralNovel/Gecko-7B-v0.1-DPO)
# merge
### Configuration

The following YAML configuration was used to produce this model:

```yaml

slices:
  - sources:
      - model: NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story
        layer_range: [0, 32]
      - model: NeuralNovel/Gecko-7B-v0.1-DPO
        layer_range: [0, 32]
merge_method: slerp
base_model: NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16



```



# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Tiger-7b-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |65.02|
|AI2 Reasoning Challenge (25-Shot)|59.98|
|HellaSwag (10-Shot)              |83.21|
|MMLU (5-Shot)                    |61.42|
|TruthfulQA (0-shot)              |61.03|
|Winogrande (5-shot)              |77.66|
|GSM8k (5-shot)                   |46.78|