File size: 6,117 Bytes
8c124a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language: en
license: apache-2.0
---
# PubMedBERT Embeddings
This is a [PubMedBERT-base](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) model fined-tuned using [sentence-transformers](https://www.SBERT.net). It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The training dataset was generated using a random sample of [PubMed](https://pubmed.ncbi.nlm.nih.gov/) title-abstract pairs along with similar title pairs.
PubMedBERT Embeddings produces higher quality embeddings than generalized models for medical literature. Further fine-tuning for a medical subdomain will result in even better performance.
## Usage (txtai)
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
```python
import txtai
embeddings = txtai.Embeddings(path="neuml/pubmedbert-base-embeddings", content=True)
embeddings.index(documents())
# Run a query
embeddings.search("query to run")
```
## Usage (Sentence-Transformers)
Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net).
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("neuml/pubmedbert-base-embeddings")
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (Hugging Face Transformers)
The model can also be used directly with Transformers.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def meanpooling(output, mask):
embeddings = output[0] # First element of model_output contains all token embeddings
mask = mask.unsqueeze(-1).expand(embeddings.size()).float()
return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("neuml/pubmedbert-base-embeddings")
model = AutoModel.from_pretrained("neuml/pubmedbert-base-embeddings")
# Tokenize sentences
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
output = model(**inputs)
# Perform pooling. In this case, mean pooling.
embeddings = meanpooling(output, inputs['attention_mask'])
print("Sentence embeddings:")
print(embeddings)
```
## Evaluation Results
Performance of this model compared to the top base models on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) is shown below. A popular smaller model was also evaluated along with the most downloaded PubMed similarity model on the Hugging Face Hub.
The following datasets were used to evaluate model performance.
- [PubMed QA](https://huggingface.co/datasets/pubmed_qa)
- Subset: pqa_labeled, Split: train, Pair: (question, long_answer)
- [PubMed Subset](https://huggingface.co/datasets/zxvix/pubmed_subset_new)
- Split: test, Pair: (title, text)
- [PubMed Summary](https://huggingface.co/datasets/scientific_papers)
- Subset: pubmed, Split: validation, Pair: (article, abstract)
Evaluation results are shown below. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric.
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average |
| ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- |
| [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.86 | 94.07 | 93.44 |
| [bge-base-en-v1.5](https://hf.co/BAAI/bge-large-en-v1.5) | 91.02 | 95.60 | 94.49 | 93.70 |
| [gte-base](https://hf.co/thenlper/gte-base) | 92.97 | 96.83 | 96.24 | 95.35 |
| [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | **93.27** | **97.07** | **96.58** | **95.64** |
| [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 90.86 | 93.33 | 93.54 | 92.58 |
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 20191 with parameters:
```
{'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## More Information
Read more about this model and how it was built in [this article](https://medium.com/neuml/embeddings-for-medical-literature-74dae6abf5e0).
|