File size: 2,057 Bytes
25143e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a349e3
25143e9
0a349e3
 
 
25143e9
 
 
0a349e3
25143e9
 
 
0a349e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25143e9
 
 
 
 
 
 
 
0a349e3
25143e9
 
 
0a349e3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
#   - text: >-
#       prompt
#     output:
#       url: https://...
instance_prompt: panda
---

# Panda

<Gallery />

## About this LoRA

This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.

It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train


## Trigger words

You should use `panda` to trigger the image generation.


## Run this LoRA with an API using Replicate

```py
import replicate

input = {
    "prompt": "panda",
    "lora_weights": "https://huggingface.co/Nerva1228/panda/resolve/main/lora.safetensors"
}

output = replicate.run(
    "black-forest-labs/flux-dev-lora",
    input=input
)
for index, item in enumerate(output):
    with open(f"output_{index}.webp", "wb") as file:
        file.write(item.read())
```

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Nerva1228/panda', weight_name='lora.safetensors')
image = pipeline('panda').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)


## Training details

- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16


## Contribute your own examples

You can use the [community tab](https://huggingface.co/Nerva1228/panda/discussions) to add images that show off what you’ve made with this LoRA.